An inverse transform approach for Gibbs-sampling
using data augmentation for latent components in
state-space models

March, 2009

Abstract
One of the steps in the Gibbs sampler for the estimation of state-space
models requires drawing values for the unobserved state vector. A common
approach for this step is the usage of the simulation smoother conditioned to
the data. In this document we discuss another approach based on resampling
techniques. In particular, we explore Vinod’s maximum entropy bootstrap as
a technique for drawing the state vector.

1 Introduction

The Gibbs sampler is a Monte Carlo technique that can be used for the estimation of
state space models. One of the steps involved in the Gibbs sampler for the estimation
of state-space models requires generating draws for the state vector conditioned on
the observed data.

The simulation smoother developed in de Jongh and Shephard (1995) and Durbin
and Koopman (2002) is a technique that generates draws for the latent state or
disturbance in the state equation of a state space model. Thus the usage of the
simulation smoother is a common approach for the step mentioned above.

In this document we discuss another approach based on a resampling technique
for time dependent data (also conditioned to the observed data). This technique
is the Vinod’s Maximum Entropy Bootstrap for time series (MEB) Vinod (2004,
2006).

In the remaining of the document we will focus on the simplest state space model:
the local level model (LLM). We consider maximum likelihood estimation via de
Kalman filter, Gibbs-sampler estimation using the simulation smoother introduced
in Durbin and Koopman (2001) and investigate on the performance of MEB for
Gibbs-sampling.

The purpose of this document is to give an insight into the maximum entropy
bootstrap developed by Vinod (2006) as a technique for drawing the state vector.
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2 The local level model

In this document, we elaborate on computer intensive techniques for the estimation
of the random walk plus noise model. This model is widely known as the local level
model (LLM). We will considerer maximum likelihood (ML) and Gibbs-sampling
estimation.

A comprehensive review of state methods for time series analysis can be found
in Durbin and Koopman (2001). Chapter 2 in that book is entirely devoted to the
local level model. The Gibbs-sampling approach for state-space models is reviewed
in the second part of the book Kim and Nelson (1999). We recap the main points
of relevance for the purposes of this exposition.

The local level model consists of an unobserved state variable plus an stationary
noise:

Y = Oét+€t, EtNN[D(O,O'z) (1)
1 = o+, mNNfD(O,Uﬁ)' (2)

With a3 ~ N(ay, P) and ¢ and 7; are independent of each other. Equation
(1) is referred to as the observation or measurement equation whereas the latent
component is modelled as a random walk in the state or transition equation in (2).

Taking the stationary representation we can see that the LLM is a restricted
ARIMA(0,1,1) model.

2.1 Gibbs-sampling estimation

The Gibbs-sampler is a computer intensive algorithm that approximates marginal
or joint distributions by sampling from the conditional distributions.

In the following we sketch the steps in the Gibbs-sampler implemented for the
estimation of the local level model.

Let us denote as § = (o2, 0’%) the parameters of the local level model and o =
{ay};—, is the unobserved state vector and y is the vector of observed data.

The posterior distribution of the Gaussian local level model is given by:

p(Bly) o< p(ylo)p(6)

where p(y|@) is functionally equivalent to the likelihood function L(f]y) and p(6) is
the prior distribution of the parameters. This is the well-known statement that the
posterior distribution is proportional to the likelihood times the prior distribution.
In order to get draws from the posterior we can design a Gibbs-sampler using
data augmentation.!
The posterior distribution after data augmentation is given by:

p(0ly) o< p(yla, O)p(al)p(0) .

Tt could also be possible to use the Metropolis-Hasting algorithm taking as the target as the
target distribution the posterior p(6|y) o p(y|0)p(8) = L(8|y)p(H).




The Gibb-sampler allows us to approximate the marginal posteriors (p(o?), p(o7)

and p(a)) by drawing from the corresponding conditional distributions.

Below we give the conditional distributions involved in the Gibbs-sampler for the
Gaussian local level model. The parameters related for the prior distributions are
denoted with subindex 0 whereas those related to the posteriors are denoted with
subindex 1.

We use conjugate priors for the variances: o? ~ IG(ag,by) and o7 ~ IG(co, do)
which combined with the Gaussian likelihood yields the conditional posterior distri-
butions shown below.

The results below follow from the relationship that the posterior is proportional
to the likelihood times the prior. Our model is Gaussian and we choose an 1G
prior for the variances. For an exposition of these results within the context of the
regression linear model see for instance Judge et al. (1980) and Koop et al. (2007).

Conditional distribution of ¢? given the data y and the state vector «

p(c?ly,a) = IG(ay,b;) with

n
a, = Qo + 5 (3)
te1 (Y — Oét)2
2
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Conditional distribution of 0727 given the state vector o

plogla) = IG(cr,dy) with

n—1
cT = Co+ 2 (4)
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d1 = d0+

Conditional distribution of {o}; , given the observed data and the two
variances 0
Under Gaussian disturbance term in the state equation the so-called transition
density is:
n
p(alf) = p(ar) Hp(Oét|Oét—1) .
t=2
With Gaussian disturbance term in the observation equation, the conditional
distribution p(aly, #) is also Normal. However the values in the state vector are not
independent, moreover, the process is not stationary. We will discuss how to deal
with this issue when designing the Gibbs-sampler for the local level model shortly.

Gibbs-sampler for the Gaussian local level model Now we are in a position
to design the Gibbs-sampler by iterating the following steps from ¢ = 1,2, ..., L+ M.
The first L iterations are discarded for subsequent estimation, that is, parameter



estimates will be obtained by taking the mean of the last M draws, respectively for
each variance and values in the state vector.
Step 1 Draw the state vector, {agi)}j_l, conditional on the observed data, o

(i-1)
and af] }

o(i—1)
€

Step 2 Draw the variance of the disturbance term in the state equation, af]@,

from the posterior distribution in equation (4) conditional on the state vector
; n
G
2(4)

Step 3 Draw the variance of the disturbance term in the observation equation, o7,
from the posterior distribution in equation (3) conditional on the state vector

a,@ " and the observed data.
t=1

The Gibbs-sampler has to be initialised for ‘752(0) and 03](0). The former initiali-

sation is required by the design of the Gibbs-sampler whereas the latter is required
for running the Kalman filter previous to the simulation smoother.

Under Gaussian disturbance terms drawing the variances from the corresponding
conditional distributions as required in steps 2 and 3 can be obtained by means of
standard random number variates. There are several algorithms for generating ran-
dom variates: the strategies from the inverse transform and the acceptance/rejection
algorithms are often followed. Sometimes, when the posterior distribution does not
belong to a a familiar distribution, Metroplis-Hasting within the Gibbs-sampler is
used.

Drawing the state vector is an instance of such a peculiar (non-familiar) distribu-
tion. Despite the state vector is Gaussian the values are not independent. Moreover,
the state equation is often a non-stationary process. For instance, in the local level
model the state vector follows a random walk.

A simulation smoother (de Jongh and Shephard, 1995; Durbin and Koopman,
2002) is a common tool used in this situation. In what follows we discuss the usage
of Vinod’s maximum entropy bootstrap for dependent data for generating draws of
the state vector conditional to the observed data.

3 Generating random variates

The development of algorithms for the generation of pseudo-random ? numbers from
the most common distributions has been an important area of research since von
Neumann and Metropolis proposed their midsquare method for random numbers in
1940.

2 Any value generated by a computer algorithm is based on a deterministic process and therefore
strictly speaking it cannot be considered random. However, good algorithms exist that generate
values such that tests (for instance goodness of fit test) cannot reject that the values come from
the random distribution at issue. We will use both the names pseudo-random or random number
for computer algorithms.



For a review of the most common strategies currently used for random numbers
see for instance the relevant chapters in Law and Kelton (2000) and Ross (2006).
Here we briefly introduce the inverse transform algorithm previous to the introduc-
tion of MEB.

In the Gibbs-sampler described in subsection 2.1 we need to draw from the inverse
Gamma distribution and from the particular distribution related to the state vector.

In this section we introduce two algorithms that allow us to generate such draws:
the inverse transform algorithm for a Gamma distribution and Vinod’s maximum
entropy bootstrap for the state vector conditional on the observed data. In a way,
the latter may be regarded as a version of the former algorithm allowing for the time
dependence exhibited by the data.

3.1 The inverse transform algorithm

We first illustrate the strategy in the discrete setting and then apply the procedure
for the case of a continuous exponential distribution.

Let us considered the following discrete random variable X with probability
function:

=1,
1

J
Jj=

The inverse transform algorithm generates a random number U from the uniform
[0,1] distribution, u € U[0, 1], and returns the value X as follows:

1 if U < po
To if po <U < po+p1

X=0e  HSln<U<yiop (5)

T if Z%]:_ol pi<U

It is illuminating to think of the picture of the cumulative distribution function.
The cumulative probability in the vertical axis ranges from 0 to 1. The inverse
transform algorithm locates in the vertical axis by generating a random number and
then apply the inverse function in order to find value of X corresponding to that
probability the abscissa axis.

In short, a random number U € U|0, 1] is generated and the value X = F~1(u)
is returned, where F' is the cumulative distribution function.

In the discrete setting this procedure can be implemented by means of a sequence
of if statements as shown above.

In some instances is not necessary to look for the interval. A relevant case for our
puposes is the exponential distribution. The distribution function of an exponential
random variable with rate A is F((r) = 1 —exp(—Ax) with z > 0. From X = F~1(U)
it follows that u = F'(z) = 1 —exp(—Ax). Rearranging terms and taking logarithms
it gives # = —1 log(1 — u). Notice that 1 — U is also uniform in the interval [0,1],
hence, it has the same distribution as —log(U).



Therefore, according to the inverse transform method, we can generate a value
X from an exponential distribution with rate A\ by generating a random number
U € UJ0,1] and setting X = —ﬁlog(U).

This procedure can be extended to the Gamma distribution, using the fact the
Gamma(a,n) is the sum of n exponentials with rate a. From that point we can go
to the inverse Gamma distribution involved in our Gibbs-sampler.

We have seen that the inverse transform method allows us to tackle steps 2 and
3 in the Gibbs-sampler described in subsection 2.1.

3.2 The maximum entropy bootstrap

Running several times the algorithm introduced in the previous subsection generates
a vector containing a sequence of independent and identically distributed variates
from the distribution at issue.

In the Gibbs-sampler we are dealing with in this document, we need to generate
a random vector from the a joint conditional distribution where the values in the
vector are not independent. Furthermore, the distribution of the state vector is not
stationary.

Here we introduce Vinod’s maximum entropy algorithm as a means for dealing
with this issue. This description of the MEB procedure is based on the original source
Vinod (2004, 2006) and the documentation attached to the R-package meboot avail-
able at CRAN (R Development Core Team, 2006). We also give further insights into
the procedure’s rationale by giving some correspondence with the inverse method’s
strategy.

The use of interpolation avoids restriction of the resampling to the set of the
observed values. Thus, although a close-form expression based on the MEB strategy
cannot be obtained for any vector (as it is the case in the inverse transform method
for the exponential distribution) and the iterative process typical of the inverse
transform for discrete data, the resultant values come from a continuum of values
through the sample path. (See first remark in subsection 2.3 in meboot vignette.)

As a matter of facts Vinod’s maximum entropy procedure provides an appealing
framework for the purposes of the Gibbs-sampler described in subsection 2.1. In
what follows we show some simulation experiments where we can check the potential
usefulness of this approach.

3.2.1 Another view to the MEB procedure

We describe and implement an algorithm that overlaps the strategies of the inverse
transform method (ITM) and MEB. The algorithm takes the empirical cumulative
distribution function (ecdf) and implements the ITM by linear interpolation (as
MEB). More importantly, time dependence is preserved by means of the mapping
between values and time as proposed in MEB.

As explained in the previous section, the inverse transform algorithm is based on
the cumulative distribution function. In some cases, the relationship X = F~1(U)



leads to a closed-form solution as we showed in the continuous setting for the expo-
nential distribution.

Some reminiscences to the inverse transform arise when looking at Figure 2
in meboot vignette. MEB is based on the Maximum Entropy distribution. Here
we propose using the empirical cumulative distribution function of the data. In
practice, an expression for the empirical F(X) for the data is not available and
hence we cannot reach to a final solution such as X = —% log(U).

We will consider the discrete setting in IMB as described in equation (5). Given
the ecdf, we draw a random number U € U|0, 1] and look for the interval where
it lies. We perform linear interpolation in the interval in order to obtain the final
draw.

Repeating the previous process as many times as the number of observations in
the data gives a new series of values. THe MEB mapping between values and time
is applied in order to recover time dependence.

Steps in the procedure:

1. Sort the original data in increasing order and store the ordering index vector.

2. Compute the minimum and maximum values allowed in the replicates (based
on trimming means as in MEB).

3. Compute the ecdf and design the corresponding intervals both for the prob-
abilities ranging between 0 and 1 in the vertical axis and the values in the
horizontal axis.

4. Draw a random vector U of the same length as the data from the uniform [0,1]
distribution.

5. Apply the inverse function for the ecdf by linear interpolation at those points
in the vector U.

6. Recover time dependence by sorting the series of values obtained in the pre-
vious step and applying the index ordering stored in the first step.

The procedure is illustrated in Figure 1 for a 5-points example data. The top-
left graphic in this figure displays the original and the sorting index ordering. The
top-right graphic shows the ecdf for the data and indicates the inverse transform for
a given uniform draw. in the example the uniform draw happens to be 0.7, which
gives, by linear interpolation, the value 16 as the final draw. This is repeated 5 times
for the following uniform draws 0.70,0.40, 0.56,0.93 and 0.56. The respective values
obtained by the inverse method are shown in the bottom-left graphic, where the
red points are the draws sorted in increasing order. The numbers indicate sorting
index from the first graphic to be applied to the sorted draws in order to recover
time dependence. The final vector of draws for the data is shown in the bottom-left
graphic.

Remark: Another approach could be to apply the inverse transform in the cumu-
lative distribution based on the maximum entropy distribution computed in MEB.
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4 Simulation experiments

4.1 Design

We perform a simulation experiment where a random walk plus noise model is
generated according to model (1-2) with 07 = 1.5 and o7 = 0.5. The simulated data
and the underlying true level (in a real situation we couldn’t observe directly this

Inverse method for time dependent data

ecdf(x) and inverse by interpolation
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Recovering time dependence

component) are displayed in the top-left graphic in Figure 2.

We estimate the local level model by maximum likelihood and Gibbs-sampling.
In the latter case we consider the usage of both the simulation smoother exposed in

Durbin and Koopman (2001) and Vinod’s maximum entropy procedure.
We take the following naming conventions:

e ML_cs: Contemporaneous estimation of the level by maximum likelihood.

e ML fis: Fixed interval smoothed estimate of the level by maximum likelihood.

e GSS: Smoothed estimate of the level by Gibbs-sampling using the simulation

smoother.



e GMEB: Contemporaneous estimate of the level by Gibbs-sampling using MEB.
e GMEB_KS: Smoothed estimate of the level by Gibbs-sampling using MEB.

The estimate ML_fis is obtained by applying the Kalman smoother to the filtered
state (contemporaneous estimate) returned by the Kalman filter at the optimum.

The contemporaneous estimate estimates the value at each time ¢ using con-
temporaneous information, that is, using the observations up to time ¢. The fixed
interval smoothed estimate used all the sample data for each value at time t of the
level. Thus, in principle the latter is expected to be more accurate and typically it
happens to be smoother.

When running the Gibbs-sampler the simulation smoother generates a smoothed
replicate of the state vector upon the filtered state vector (contemporaneous esti-
mation) returned by the Kalman filter upon the corresponding input parameters
obtained at each iteration in the Gibbs-sampler. The simulation smoother returns
a smoothed replicate for the state vector, that is, the draw for the state vector is
not contemporaneous but uses all the information in the sample data. The final
estimate of the state vector, GSS, is obtained by taking the mean for each time ¢ of
all the replicates generated in the Gibbs-sampler (except for the first L replicates,
which are discarded).

In the case of the Gibbs-sampler using MEB, the draw for the state vector is
generated by replicating the data y; and the applying the Kalman filter with the
corresponding parameters obtained at each interaction.

Thus we should notice that the implementation of the simulation smoother uses
a smoothed replicate of the state vector whereas the implementation of the Gibbs-
sampler using MEB uses a contemporaneous replicate of the level.

The final estimate of the state vector GSS is obtained by taking the mean for
each time ¢ of all the replicates generated in the Gibbs-sampler (except for the first
L replicates, which are discarded). The same is done when using MEB obtaining
GMEB.

Finally, GMEB_KS is obtained by applying the Kalman smoother to GMEB
for the parameter estimates obtained in the Gibbs-sampler. These parameters® are
estimated in the Gibbs-sampler as the mean of all the draws obtained in the Gibbs-
sampling. In the case of Maximum likelihood these estimates are the output from
the optimization routine.

REMARK Remains to include a contemporaneous estimate of the state vector
when the SS is used. It can be done by running the Kalman filter for the esti-
mates obtained from GSS. Although not reported here, it can be seen that the first
differences of this version does not exhibit correlation.

3The variances of the disturbance terms. For the moment we do not discuss the initial value
and variance of the of the state at time ¢t = 1.



4.2 Parameter estimates

Table 1 reports parameter estimates for the variance of the disturbance term in the
observation and state equation (o2 and 0727, respectively) by ML and Gibbs-sampling
using the simulation smoother (GSS) and MEB (GMEB).

The ML and GSS estimate for o2 are close to the true value 1.5. Estimate
by GMEB is more than two times the standard deviation farther from the true
value. This may be due to the fact that the state vector replicates are based on
contemporaneous information.

The estimates for the variance in the state vector, ag, are close to the true value
0.5 in all cases, especially in the Gibbs-sampling approach.

Table 1: Simulation 1. Parameter estimates

True ML GSS GMEB
1.4549  2.6437

2
(op 1.5 1.6569 (0.2593)  (0.3346)
) 0.4341 0.4890
o, 0.5 0.3227 (0.1519)  (0.1054)

The Gibbs-sampler is initialised at the true values 02 = 1.5 and o, = 0.5. The prior parameters
in the IG distribution are a = ¢ =10 and b = d = 4.

4.3 State vector estimates

Figure 2 displays the smoothed estimates for the three procedures. We can see
that the ML _fis, GSS and GMEB_KS are close to each other. The autocorrelation
functions (ACF) of the first differences of the estimates are plotted in the right-
hand side of Figure 2. The first difference of the level in the data generating process
is the white noise 1 and therefore there is no autocorrelation in it. However, we
can see that in all the smoothed estimates the ACF suggests the presence of some
dependence in the estimates. The ACF truncates at the second or third lag and the
first lag is highly significant in the three cases.

Figure 3 displays the contemporaneous estimates ML_cs and GMEB. The smoothed
estimated GSS from Figure 2 is also displayed for comparison. The estimates ML_cs
and GMEB are close to each other. As expected the filtered estimates are rougher
than in the previous graphic. Despite lack of smoothness relatively to the previous
case the up and downs are in agreement with the movements in the true level. It
is striking noticing that the ACF of the first differences are in this case compatible
with a white noise.

Figure 4 displays pairwise comparisons of the state estimates when MEB is used.
The series GMEB matches ML_cs and GMEB_KS is close to ML _fis and GSS.

Regarding the existence of autocorrelation in the smoothed estimates when the
Gibbs-sampler is used we found that the ACF of the state vector replicates generated
at each iteration in the Gibbs-sampler are not significant. Significant lags arise when
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the final estimate is taking by averaging for all the simulated values at each period
t.

The above-mentioned state vector replicates generated at each iteration in the
Gibbs-sampler both for the simulation smoother and MEB are displayed in the
animation in Figure 4.

Figure 2: Simulated series and level and level estimates 1/3
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Figure 3: Simulated series and level and level estimates 2/3
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Figure 4: Simulated series and level and level estimates 3/3
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5 Conclusions

The purpose of this work was to explore the maximum entropy bootstrap as an al-
ternative to the simulation smoother to obtain parameter estimates of a state space
model by means of Gibbs sampling. We also discussed an implemented a version of
the maximum entropy bootstrap based on the inverse method for sampling random
variates. The main appeal of the maximum entropy approach is the fewer number
of operations that are involved in the computations compared to the simulation
smoother. We observed the following: 1) The resampling technique for time depen-
dent data proposed by the maximum entropy bootstrap provides replicates of the
state vector conditional on the observed data (as required by the Gibbs sampling
and imposed in the derivation of the simulation smoother). 2) Gibbs sampling pa-
rameter estimates based on the maximum entropy bootstrap are not satisfactory
enough. Simulation results reported in this paper and further results not reported
showed that parameter estimates are not close to the true values compared to those
results obtained by means of the simulation smoother. Further inspection suggested
that there is not enough variability on the maximum entropy bootstrap and, hence,
it may not be a suitable alternative to the simulation smoother in this context. The
animated figure provided with this paper displays resampled state vectors based on
each procedure. In this animation the series are overlapped and despite it makes
the graphic a little messy, it can be observed that the variance of the state vector
based on the maximum entropy technique is much narrower than in the simulation
smoother.

Further research is required to adapt the maximum entropy bootstrap to the
context of estimation of state space models by Gibbs sampling and exploit its com-
putational advantages compared to the simulation smoother.
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