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Javier López-de-Lacalle †

Universidad del Páıs Vasco
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Abstract

Traditional econometric methods require the data to be station-
ary. Since most of the macroeconomic time series are non-stationary,
several tests have been developed to find out the most suitable way
of transforming data into stationary. In a univariate framework, the
uroot R-package implements tests for the null hypotheses of unit root
and stationarity in seasonal time series. This document focuses on
macroeconomic seasonal time series, nevertheless, the analysis can be
extended to other areas of research.

A guidance on the use of the uroot R-package is given. The package
performs graphical and statistical analysis and provides a graphical
user interface. Some of the prominent test statistics are introduced
and a protocol for detecting unit roots is described. The use of the
package is illustrated with an example.

Keywords: Time series, unit root, seasonality, R.

∗The first author acknowledges financial support from the Universidad del Páıs Vasco to
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1 Introduction

Traditional econometric methods require the data to be stationary.1 Most of
the macroeconomics time series, instead, display a trend and heteroskedas-
ticity,2 failing to fulfil stationarity conditions. As a consequence, time series
must be modelled taking into account non-stationary features detected in
the data. Equations below show some processes in which, due to a trend in
the data, the mean is not constant. In spite of having a trend, its nature is
different in each case.

yt = yt−1 + εt , (1)

yt = α+ β t+ εt , (2)

where εt is white noise, iid (0, 1). Equation (1) is a random walk. It may be
easily showed that this process is generated by an accumulation or integration
of shocks in εt which shapes a stochastic trend. Process in Equation (2) is
guided by an intercept, α, and a deterministic trend, in particular, a linear
trend with a slope equals to β.

With regard to seasonal pattern let us see the following processes:

yt = yt−S + εt , (3)

yt =
S∑

i=1

γiDi,t + εt , (4)

where εt is white noise, iid (0, 1), S is the periodicity of the time series, and
Di,t are seasonal dummies. Data generating process in Equation (3) is guided
by seasonal accumulation or integration of shocks in such a way that, each
season, as well as the long run, evolves according to a random walk. The
process described in (4), instead, shapes a deterministic seasonal pattern,
since γi are constant for all the period.

Note that when non-stationary features arise from a deterministic source,
Equations (2) and (4), the data become stationary once the linear trend or
seasonal dummies are estimated and removed from the original data. When
the trend or seasonal component is stochastic, Equations (1) and (3), to take
first or seasonal differences transforms the data into stationary.

Durlauf and Phillips (1988) warn about the dangers of testing a linear
trend significance in the presence of a unit root. They prove that if the data

1ARMA modelling, for instance, is based on Wold’s Theorem, which applies to station-
ary data.

2This term refers to a non-constant variance. It is a common phenomenon in macroe-
conomic time series, suggesting that trend, seasonal, and irregular components add them
up in a multiplicative way.

3



contain a unit root such as in Equation (1), the distribution of the t-statistic
for the trend, tβ, is not the standard distribution since it would overestimate
the significance of this component. The same applies to seasonal dummies.

There is a trade-off between the following two matters. On the one hand,
if a unit root is omitted, estimates are inconsistent. On the other hand,
to assume more unit roots than those that are actually in the data will
increase the variance of the estimator. The first mistake invalidates inference
outcomes, whereas the second increases the error prediction variance, making
forecast less accurate.

In the face of this fact, most of the applied researches take a conser-
vative position, limiting the analysis of stationarity to the paradigm of the
∆∆S log(yt) filter. In practice, however, it may happen that only some of
all the roots in that filter are equal to unity. In that case the regular and
seasonal differences fiter do not fit the data. Graphics and tests implemented
in uroot allow the researcher to decide which roots in the filter ∆∆S should
be regarded equal to unity.

The remaining of this document consists of two differenciated parts. The
first one reviews theoretical issues concerning the functionalities implemented
in the uroot package. Section 2 describes some concepts related to unit root
tests. Section 3 reviews ADF and KPSS tests, whereas section 4 is devoted to
HEGY and CH seasonal unit root tests. Section 5 introduces a protocol for
detecting unit roots. The second part provides a guidance in the use of the
package. Section 6 explains how to run the uroot package. Section 7 shows
an application in which the main facilities of the package are illustrated.

Part I

Theoretical Review

2 Stationary and Integrated Processes

Traditional statistical and econometric methods assume that the data arise
from a stationary process. a stochastic process is stationary if all of its
random variables are identically distributed. This condition implies that all
of the statistical moments of the variable are identically distributed.

In practice, these conditions are too demanding, and only first and second
moments are usually required to be identical. In this case, the condition is
called second order or weak stationarity and entails that mean, variance,
covariances, and correlations do not depend on the sample period in which
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they are quantified, but they are constant.
Table 1 summarizes statistical properties of the process (5) when it is

stationary, I(0), that is, |φ| < 1, against the case in which it is integrated,
I(1), for φ = 1.

yt = φ yt−1 + εt . (5)

Table 1: Stationary process, I(0), versus integrated process, I(1)

Stationary ARMA Integrated process
Variance Finite Infinite
Autocorrelation

function ρk = φk ρk =
√

t−k
t

Returning to mean
estimated period Finite Infinite

Memory Temporal Permanent

Since most of the macroeconomic time series evolve along a trend and
display heteroskedasticity, they are generally not stationary even in the weak
sense. Nevertheless, these facts don’t detract from the traditional economet-
ric statements. Graphics and tests described in this article help to determine
non-stationarity features in the data and to modelize them properly.

Since the article of Nelson and Plosser (1982) several tests have been
developed to establish whether the long run of a time series is better described
by a deterministic or a stochastic component. To this effect, Augmented
Dickey-Fuller test [ADF], (Dickey and Fuller, 1981), as well as Kwiatkowski
et al. (1992) test [KPSS] are implemented in uroot.

With regard to seasonal cycles, they have often been understood as a
noise that hides outstanding information for economic analysis. This inter-
pretation arose from the difficulty to explain fluctuations that depart from
the trend-cycle component. Researches argued deterministic events to ex-
plain the short run fluctuations: holidays, meteorology, and other events
that occurs regularly in the economy were understood as the main source of
seasonal patterns.

Although it seems at first plausible, facts don’t add up. Several articles,
(Dickey et al., 1984), Hylleberg et al. (1990), and Canova and Hansen (1995),
among others), have revealed that seasonal cycles are often bigger and less
regular than if they are a consequence of phenomenons like those mentioned
above.
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Causes and economic content of seasonal cycles have been also discussed.
Nowadays, seasonality in economic time series is defined as Hylleberg, 1992,
pg. 4 says:

Seasonality is the systematic, although not necessarily regular,
intra-year movement caused by the changes of the weather, the
calendar, and timing of decisions, directly or indireclty through
the production and consumption decisions made by agents of the
economy. These decisions are influenced by endowments, the ex-
pectations and preferences of the agents, and the production tech-
niques available in the economy.

For a better understanding of some basic concepts in this article we will
decompose the seasonal operator into partial polynomials. Let L be the lag
operator and S the periodicity of the data, then (1 − LS) is the seasonal
operator. In the case of quarterly data, S = 4, and monthly, S = 12, it
yields:

(1− L4) = (1− L)(1 + L)(1 + L2)

(1− L12) = (1− L)(1 + L)(1 + L2)(1 + L+ L2)(1− L+ L2)

(1 +
√

3L+ L2)(1−
√

3L+ L2)

Table 2 summarizes long run and seasonal cycles in quarterly and monthly
series, as well as the roots of each polynomial. When the module of the roots
in these polynomials are equal to unity, the corresponding cycle is shaped as
an accumulation of shocks. When the root lies outside the unit circle, shocks
have transient effect, instead.

Sections 3 and 4 introduce some statistics to test whether the module
of long run and seasonal roots are equal to unity as it is the case in the
polynomials reported in Table 2.

3 Long Run Unit Root Tests

3.1 The ADF test

On the basis of an AR(1) process, Equation (6), Fuller (1976) and Dickey
and Fuller (1981) obtain the critical values to test if a unit root exists as well
as the significance of deterministic components.

yt = ρ yt−1 + εt , (6)
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Table 2: Long run and seasonal frequencies

Cycles/
Frequency Period year Root Filter

Monthly series
0 Long run ∞ 0 1 (1− L)

π
6
, 11π

6
Annual 12; 1.09 1; 11 1

2
(
√

3± i) (1−
√

3L+ L2)
π
3
, 5π

3
Semiannual 6; 1.2 2; 10 1

2
(1±

√
3i) (1− L+ L2)

π
2
, 3π

2
4; 4

3
3; 9 ±i (1 + L2)

2π
3
, 4π

3
Quarterly 3; 1.5 4; 8 −1

2
(1±

√
3i) (1 + L+ L2)

5π
6
, 7π

6
2.4; 1.7 5; 7 −1

2
(
√

3± i) (1 +
√

3L+ L2)
π Bimonthly 2 6 −1 (1 + L)

Quarterly series
0 Long run ∞ 0 1 (1− L)

π
2
, 3π

2
Annual 4; 4

3
1; 3 ±i (1 + L2)

π Semiannual 2 2 −1 (1 + L)

where the null hypotheis is ρ = 1. It is convenient rewrite the Equation (6)
as follows:

∆ yt = φ yt−1 + εt . (7)

The null hypothesis for a unit root is φ = 0, and the corresponding t−statistic

is as usual, τφ = φ̂
σ̂φ̂

. The alternative hypothesis is: −2 < φ < 0. As φ > 0

implies ρ > 1, that is, an explosive behaviour, it may be detected just in the
graphics of the original data. Anyway, such an explosive behaviour is not
usual in macroenomic time series.

The distribution of the t-statistic depends on the deterministic compo-
nents included in the auxiliar regression. In particular, Dickey and Fuller
(1981) consider the following versions:

∆yt = φ yt−1 + εt ,

∆yt = α+ φ yt−1 + εt ,

∆yt = α+ β t+ φ yt−1 + εt ,

Finally, it must be taken into account that the data generating proccess
simulated to obtain the critical values is an AR(1) process where the residuals
are white noise. Since including lags of the dependent variable does not affect
to the t-statistic distribution, they should be added to the auxiliar regression.
Several methods for selecting the order of lags that provides white noise
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residuals are available in uroot. These methods are based on criteria such as:
AIC, BIC, significant lags, and Ljung-Box statistics.

3.2 The KPSS test

Kwiatkowski et al. (1992) develop a statistic in which the null hypothesis is
a stationary process, whereas the alternative is an integrated process. The
statistic focuses on the variance of the residuals in the following two frame-
works:

yt = ψ t+ rt + εt ,

rt = rt−1 + ut , ut ∼ iid (0, σ2
u) ,

where the initial value, r0 is fixed, playing the role of an intercept. The time
series is stationary when σ2

u = 0, otherwise the long run follows a random
walk around a deterministic trend of slope ψ.

The second model is specified as follows:

yt = rt + εt

rt = rt−1 + ut, ut ∼ iid(0, σ2
u) ,

where under the null hypothesis is σ2
u = 0, hence, the series is guided by a

level stationary process without a deterministic trend, that is, ψ = 0.
Depending on the null hypothesis desired to test the residuals of one of

the following regressions are needed to obtain the statistic:

yt = α+ β t+ et ⇒ et = yt − α̂− β̂ t , (8)

for the null hypothesis of trend stationarity,

yt = α+ et ⇒ et = yt −
1

T

T∑
t=1

yt , (9)

for the null hypothesis of level stationarity.
In both cases, the statistic is calculated as:

µ = n−2
n∑

t=1

S2
t

s2(l)
, (10)

where St =
∑t

i=1 ei, t = 1, 2, ..., n. Finally, s2(l), defined in Equation (11), is
a consistent estimator of the residuals variance that fulfils regularity condi-
tions described in Phillips, 1987, assumption 2.1. In this way, residuals are
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allowed to belong to a less restricted set than id ∼ N(0, σ2
ε ). In particular

some degree of correlation is allowed.

s2(l) = n−1
n∑

t=1

e2t + 2T−1
l∑

s=1

w(s, l)
T∑

t=s+1

etet−s. (11)

The weighting function w(s, l) is the one proposed by Newey and West (1987)
and is defined as w(s, l) = 1− s

l+1
. The lag truncation parameter, l, must tend

to infinite as the sample size goes to infinite for the estimated covariances
matrix to be consistent.

4 Seasonal Unit Root Tests

4.1 The HEGY test

According to the ADF test, Dickey et al. (1984) obtained the critical values
of φ under the following data generating process.

(1− LS)yt = φ yt−S + εt , εt ∼ iid (0, σ2
ε ) , (12)

where S is peridocity of the data: 4 in the case of quarterly series and 12
for monthly series. Under the null hypothesis φ is equal to 1 and the process
contains all the roots in Table (2), page 7. In practice, however, it may be
some, but not all, seasonal unit roots. Hence, it would be convenient to
specify a model in which the regressors allow to test for individual roots.
That is what Hylleberg et al. (1990) achieve in the case of quarterly series.

The seasonal operator can be decomposed into the following polynomials:
(1 − L4) = (1 − L)(1 + L)(1 − iL)(1 + iL), where the roots are (±1,±i).
Assuming yt is generated by an AR(p) process, Hylleberg et al. (1990) show
that yt can be represented as

ϕ (L) ∆4yt = π1 y1,t−1 + π2 y2.t−1 + π3 y3,t−2 + π4 y3,t−1 + εt , (13)

where an intercept, linear trend, and/or seasonal dummies may be included.
The ϕ (L) polynomial consist of those lags of the dependent variable needed to
ensure that the residuals are white noise. They may be chosen according with
criteria such as: AIC, BIC, significant lags, and Ljung-Box. The regressors
are defined as follows:

Each one of the regressors, yi,t, retains a single unit root filtering the
remaining roots. They are defined as follows:

� y1,t = (1 + L)(1 + L2) yt = (1 + L+ L2 + L3) yt ,
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� y2,t = −(1− L)(1 + L2) yt = −(1− L+ L2 − L3) yt ,

� y3,t = −(1− L)(1 + L) yt = −(1− L2) yt .

A test for the null hypothesis of the unit root 1 is carried out with the
t−statistics for π1 = 0, the hypothesis of the unit root −1 entails the test
π2 = 0, whereas the same hypothesis for the unit roots ±i may be tested
with a t−statistic for π3 = 0 and π4 = 0, or jointly with an F−type test.
Hylleberg et al. (1990) collect the suitable critical values for each case.

Burridge and Taylor (2001) show that if the residuals are correlated, after
including lagged seasonal differences the t-statistics for the unit roots 1 and
−1, as well as the F−type tests for the harmonic frequencies keep the same
limiting null distributions, but the t−statistics for the harmonic frequencies
do not, instead. Hence, we will consider in this article the F−type tests for
those frequencies.

Beaulieu and Miron (1993), Franses (1990), and Franses and Hobijn
(1997) get the critical values of the corresponding statistics for other pe-
riodicities of the data, monthly time series among others.

4.2 The CH test

In the same way as the KPSS test reverse the null and the alternative hy-
potheses of the ADF test, Canova and Hansen (1995) reverse HEGY’s hy-
pothesis. As in the KPSS test, the CH framework is an state space represen-
tation of an unobserved components model:

yi = µ+ x′i β + f ′i γi + ei , (14)

con A′ γi = A′ γi−1 + ui , i = 1, 2, ..., n (15)

with γ0 fixed, ui ∼ iid, ei ∼ (0, σ2
e), and xi are lags of the original series.

Matrix fi and γi are built as follows:

γi =


γ1i

·
·
γqi

 , fi =


f1i

·
·
fqi

 (16)

where q = S/2, and S is the periodicity of the series. If j < q, f ′ji =
(cos(j/q)πi, sin(j/q)πi) and if j = q, f ′qi = (cos(πi) = (−1)i, sin(πi) = 0).
Matrix A(s−1)×a selects a elements from γi to be tested.

Since no lags of the dependent variable are included, to avoid that residual
correlation distorts the distribution of the statistics a consitent variances and

10



covariances matrix is estimated. This matrix may be calculated as Newey
and West (1987) suggest:

Ω̂ =
m∑

k=−m

w

(
k

m

)
1

n

∑
i

di+k êi+k d
′
i+k êi+k . (17)

Intuitively, the test works as follows. If the variances and covariances
matrix E(uiu

′
i) = τ 2G is null, that is, τ 2 = 0, the seasonal pattern of those

cycles selected in A are not guided by the random walk described in the state
Equation (15) but they are constant.

The matrix G is defined as:

G = (A′ Ωf A)−1, where (18)

Ωf = R′
1 Ω̂R1, with (19)

R1 = [f ′1, ..., f
′
s] . (20)

The test for the null hypothesis, H0 : τ 2 = 0, against the alternative,
Ha : τ 2 > 0, is carried out with the statistic defined below:

L =
1

n2

n∑
i=1

F̂iA(A′ Ω̂f A)−1A′Â′F̂i (21)

=
1

n2
tr((A′ Ω̂f A)−1A′

n∑
i=1

F̂ F̂ ′A),

where Fi arise from fi, defined in (16), as F̂i =
∑i

t=1 ft êt , êt are the residuals
obtained in Equation (14), Ω̂f is defined in (19), and tr(Q) is the trace of Q.

Finally, Canova and Hansen (1995) explain that: H0 : L
d→ VM(a). That

is to say, under the null hypothesis of stationarity in the a selected cycles, the
statistic in expression (21) follows a Von Mises distribution with a degrees
of freedom.

5 Protocol

This section describes a protocol for detecting unit roots. As we have seen
in Sections 3 and 4, the null hypothesis of ADF and HEGY tests are the
alternative of KPSS and CH tests, and vive versa. To be brief, the remaining
of the section refers to HEGY and CH tests. Nevertheless, taking into account
that ADF and KPSS tests are alike to HEGY and CH, respectively, the
conclusions in this section apply straightforward to long run unit root tests.

With regard to seasonal unit roots, Hylleberg (1995) shows some simula-
tion exercices concluding that both tests, HEGY and CH, complement each
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other. A variety of processes are considered and, depending on their features,
it can be seen that when one of the tests fails to detect the data generat-
ing process, the other often leads to the right outcome. This conclusion is
supported on the fact that the data generating process is a known one.

In practice, the structure of the data generating process is unknown, and
obviously, it cannot be found out which the more suitable test is. Dı́az-
Emparanza and López-de Lacalle (2004) perform some simulations where,
regardless to the data generating process, both tests are applied to reach a
conclusion. This section describes the protocol for detecting unit roots used
in those simulations. The arguments that justify the protocol are set out as
well.

Figure 1: CH-HEGY sequence

CH test

�
���

��

H
HHH

HH

Do not reject H0

HEGY test

��
���

HH
HHH

Do not reject H0

Non-informative

The null hypothesis of the CH test is stationarity.
The null hypothesis of the HEGY test is that a unit root exists.
When both test statistics fail to reject their null hypotheses, it is advisable consider

that a unit root exists.

Reject H0

Iω(0)

Reject H0

Iω(1)

According to the null and the alternative hypothesis defined in both tests,
HEGY and CH, it may be expected that when one of them rejects its null
hypothesis, the other will maintain its corresponding null hypothesis, and vice
versa. However, when the data generating process departs from the model
specified in the null hypotheses, the size and power of these tests become
distorted. This is the case when there are some, but not all, seasonal unit
roots, when some of the roots are close to unity, or when the data are affected
by outliers, especially level shifts.
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As a consequence, with real data, it may happen that both tests either
maintain or reject their corresponding null hypotheses. In the first case, the
data are non-informative since neither of the tests rejects its null hypothesis,
perhaps due to a short sample. In the second case, conclusions are not
coherent and a further analysis would be necessary, an outliers analysis, for
instance, would be well advice.

This circumstance raises the following question. How does it affect the
sequence in which both statistics are interpreted? What is the most suitable
sequence for applying these tests? Figure 1 depict the decision tree for the
CH-HEGY sequence.

It must be noted that on the basis of that tree, and given a significance
level and power of the tests, it cannot be guessed the probability of reaching
each one of the outcomes. The reason is that both statistics are not inde-
pendent. Furthermore, we cannot determine the significance level entailed
by the whole sequence of tests. Put in other words, the sequence must be
chosen on the basis of other criteria. Anyway, a further insight into the case
in which both statistics are independet will be first useful.

As a reference, under the fictitious case in which both statistics are inde-
pendent, the corresponding conclusions would be obtained according to the
results in Table 3. Given a 5% significance level in both tests, this table
shows the probability of reaching each one of the conclusions when the data
generating process is integrated or stationary. Both sequences, HEGY-CH
and CH-HEGY, are considered.

Under the previous assumption, when a unit root exists, the CH-HEGY
sequence detects this fact a µ per cent of all the cases, bigger than 0.95µ in
the case of HEGY-CH. When the series is stationary, the sequence HEGY-CH
is the one which detects this fact with more success, ψ > 0.95ψ.

Even in that fictitious case it is an awkward matter to decide on one of
the sequences, since it entails choosing which mistake we wish to minimize.
As we brought forward in the first section, there is a trade-off between the
following two matters that must be weighed up. On the one hand, if a unit
root is omitted, estimates are inconsistent (Durlauf and Phillips, 1988). On
the other hand, to assume more unit roots than those that are actually in
the data will increase the variance of the estimator. The former mistake
invalidates inference outcomes, whereas the latter increases error prediction
variance, making forecast less accurate.

Judging the drawback of omitting a unit root more serious than the con-
verse mistake, we advocate using the CH-HEGY sequence. It is also advised
to consider the presence of a unit root in those cases in which the series is
non-informative.

If a unit root exists, it would be better to conclude the analysis rejecting
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Table 3: Test sequences

Iω(1) series
Hypothesis CH-HEGY HEGY-CH
Iω(0) 0.05 (1− µ) 0.05
Iω(1) µ 0.95µ
Non-info. 0.95 (1− µ) 0.95 (1− µ)

Iω(0) series
Hypothesis CH-HEGY HEGY-CH
Iω(0) 0.95ψ ψ
Iω(1) 0.05 0.05 (1− ψ)
Non-info. 0.95 (1− ψ) 0.95 (1− ψ)

Cells report the percentage of cases in which each one of the
hypotheses is maintained.

µ is the power of CH test.
ψ is the power of HEGY test.

stationarity hypothesis rather than maintain the unit root hypothesis. As the
CH-HEGY sequence begins testing the stationarity null hypothesis it takes
position on favour of this goal. It also avoids that, depending on the power
of the HEGY test, the analysis ends up rejecting a unit root when it actually
exists.

Therefore, the CH-HEGY sequence solves the dilemma mentioned above
taking a conservative approach. Although this sequence is expected to min-
imize the cases in which a unit root is omitted, this goal is achieved to the
detriment of getting success in detecting stationary cases. Hence, the analy-
sis focuses on avoiding inconsistent estimates allowing a possible increase in
the variance of the estimator as little as possible.

Burridge and Taylor (2004) Burridge et al. (2003)
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Part II

Applied Analysis

6 The uroot Package

6.1 Installing and running uroot

This paper documents the version 1.4 of the uroot package, which was built
under R 2.1.0. The source code and binaries of the package are available
at The Comprehensive R Archive Network [CRAN] (). To install the pack-
age, copy the binaries in the subdirectory library where R is installed.3 Al-
ternatively, download the source package and install it with R CMD INSTALL

uroot_1.4.tar.gz. To install it from an R-console type install.packages("uroot")
and select a mirror near to your location.

The package provides a graphical user interface [GUI] which is launched
by the urootgui() function. The GUI displays each time series, their trans-
formations, and selected subsamples by means of a tree widget. It also dis-
plays dialog boxes describing the arguments of the main functions imple-
mented in uroot, in this way, these functions can be easily run. Nevertheless,
not all the capabilities of those functions can be carried out from the GUI
and some knowledge on the command-line functions is recommended.

The GUI is independent of the package and all the functions and data
are available without launching it. It is based on the tcltk R-package and
BWidget, an extension for tcltk that consists of Tcl scripts. BWidget is not
included in the standard tcltk package. The version 1.7.0 of BWidget4 is
attached to uroot. urootgui() automatically sets up this extension adding
a new Tcl path directory to the uroot directory, where BWidget is stored.

Finally, the xtable R-package is suggested to convert objects to an xtable

object, which can be printed as a LATEXor HTML object. The urt.xtable

and save.xtable methods are based on this package and create a table with
the main results of the unit root tests. As we will see, there are also some
other useful functions that take advantage of this package to export results
to a LATEX file.

3Type R.home() in an R-console to find out the home directory.
4An updated version can be downloaded from .
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6.2 Loading data

The package provides sample data that consist of selected macroeconomic
time series from the Basque Country,5 mccapv, and Spain,6 mces, as well as
the data employed in the book Franses (1996), mcmisc. These data sets are
stored in .rda file which contains a list object with the time series. A particu-
lar time series can be loaded from the menu Data - Data bank in the GUI.
The complete list for each data set can be loaded as usual, data("mces"),
then one or more time series can be picked up from the whole list. See the
standard help pages for a description and sources of the data.

The GUI displays a dialog box for importing data stored in a .csv or
.txt file. The user is asked for a label, periodicity and starting date of the
sample, so that the suitable attributes can be added to the object with the
data. In addition to the ts object, an item is created in the tree-widget of the
GUI. If there are several items in the tree-widget menu, the data regarded
as the input for any of the functions is the one that is highlighted. The user
can change the working series clicking with the cursor of the mouse over the
items.

In the example of the next section, the Real Gross National Product in
Germany is analysed. These data are in the list mcmisc and the series is
labeled as gergnp. We can start the example loading the package and the
data:

> library(uroot)

> data("mcmisc")

> gergnp <- mcmisc$gergnp

7 An Example

This section illustrates with an example how to use the functions imple-
mented in uroot for detecting long run and seasonal unit roots. All the func-
tions used in this example are easy to run just with the right click over the
menu in the GUI. However, the main commands for the console are showed
so that the reader become acquainted with the names and usage of the func-
tions. A description on the usage of these functions is also provided by the
uroot standard help files.

The time series analyzed in this example is the Real Gross National Prod-
uct in Germany, labeled as gergnp. Data are collected quarterly from 1960.1

5The original source is the IKERBIDE database developed by the Public Administra-
tion of the Basque Country.

6The original source is the Instituto Nacional de Estad́ıstica of Spain [INE].
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to 1990.4. The series can be extracted from the mcmisc data set, as in the
code above, or can be straightforward loaded from Franses (1996) data
bank in the Data menu. The latter will create a list object called gerpnp, as
well as an item in the tree widget.

7.1 Graphics

7.1.1 Original series preview

The panel available in the Utilities - Panel - Quarterly series - Se-

lected graphics menu is useful for a first glance at the data, see Figure 2.
Graphics in this panel may be individually displayed in the Graphics menu.
Looking at range-mean plots, Figure 2 shows that the variance remains rel-
atively stable along the sample period.

There is no relationship between the range and the mean in the original
series, since the cloud of points locates along a horizontal stripe. If loga-
rithms are taken, the range-mean relationship become negative and large,
−0.73, instead. Hence, range-mean plots do not support to take logarithms.
To take logarithms is a common strategy when working with data, since it
not only homogenizes the variance but also abates outliers and contributes
to normalize residuals. However, in this illustrative application we will be
rigurous interpreting the range-mean plot and the scale of the series will not
be changed.
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Figure 2: Real GNP in Germany. Selected graphics
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The original series appears to have a prominent seasonal pattern. First
differences plot, in the same Figure 2, seems to still retain this pattern,
whereas adding the seasonal difference it vanishes.

Finally, estimated spectral density plots in Figure 2 confirm the presence
of outstanding seasonal cycles, since that which completes one cycle per year
explains a large proportion of the variance of the series. A lower peak at
semiannual frequency is noticed as well.

Figure 3, available in the Utilities - Panel - Correlograms menu,
displays autocorrelation functions [ACF] and partial autocorrelation func-
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tions [PACF] for the original and differenced series. Broadly speaking, it
may be noted that non-stationary features exist. ACF of the original series
does not decrease exponentially. Nor does it the ACF of the first differences
series, where seasonal correlations remains significant even for large orders.

Seasonally differenced series7, ∆s(y), has a reasonable ACF for stationay
data. After adding a regular difference, ∆ ∆s(y), ACF and PACF do not
suggests any structure and the data seem to be overdifferenciated in that
case.

7.1.2 Seasonal operator

In the example below the seasonal operator is decomposed and plotted so
that each one of the cycles collected in table 2, pg. 7, can be graphically
analysed. The function factorsdiff is used for it. The argument factors
is a 0-1 vector of length S/2+1, where S is the periodicity of the data. For
quarterly series, the frequencies are ordered in the vector as follows: 0, π,
and π/2.8. A zero in the element i of the vector indicates that the cycle
associated to the corresponding frequency will not be filtered. The cycles
related to frequencies that are set equal to 1 are filtered.

> sdiff <- diff(gergnp, lag = 4)

> lrun <- factorsdiff(gergnp, factors = c(0, 1, 1))

> sann <- factorsdiff(gergnp, factors = c(1, 0, 1))

> ann <- factorsdiff(gergnp, factors = c(1, 1, 0))

> opar <- par(mfrow = c(2, 2), mar = c(2, 3, 3.5, 2), tcl = -0.5,

+ las = 1)

> plot(sdiff, main = "Seasonal difference")

> plot(lrun[[1]], main = "Long run")

> plot(sann[[1]], main = "Semiannual cycle")

> plot(ann[[1]], main = "Annual cycle")

> par(opar)

Figure 4 displays the seasonal differencing filter and its decomposition into
long run cycle and sesonal cycles. The instability in the semiannual cycle,
especially at the beginning of the sample, makes the semiannual frequency
liable to contain a unit root. On the other hand, in spite of displaying a rather
straight growing trend, the long run cycle undergoes changes in the level that
depart it from a purely deterministic trend. A priori, those changes may be
due to outliers such as level shifts or an additive outlier in 1975.I. However, to

7Remember that this filter removes a long run unit root as well.
8See uroot help files for monthly series.
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keep inside the limits of this analysis, recursive testing is proposed in Section
7.2 in order to avoid that possible outliers distort the interpretation of the
statistics.

7.1.3 Seasonal paths

Buys-Ballot plot is a common way of displaying seasonal time series. It can
be obtained with the function bbplot. This function depicts the path of
each season. In the example below, quarterly paths for original and first
differenced series are displayed. See Figure 5. After removing the effect of
the long run over seasonal paths, that is, in the first differenced series, the
graphic shows that the quarterly paths are not parallel. This suggests that
the seasonal pattern is not constant, hence, some seasonal unit roots are
expected to be found. In addition, a slight trend in the seasonal paths can
be detected. The user can take a different view of this plot by means of the
following functions: bb3D; for a perspective plot of surface over the season-
year plane, bbcn; which displays the contour lines of the previous plot, and
bbap; to plot the anual path of selected years.

opar <- par(mfrow=c(1,2), las=1, mar=c(2,3,3.5,2))

bbplot(wts=gergnp)

bbplot(wts=diff(gergnp, lag=1))

par(opar)

7.2 Unit root tests

This section applies the tests expounded in Sections 3 and 4. Previously,
upon the guidance provided by the graphical analysis, significance of the
deterministic compoments: Intercept, linear trend, and seasonal dummies, is
discussed. We will do it on the basis of the regressions of the ADF and HEGY
tests. For it, the arguments of the corresponding functions are described
below.

We have seen that the rationale of these tests is similar, consequently, both
functions, ADF.test and HEGY.test contain the same arguments, namely, the
working time series, wts, deterministic components, itsd, other regressor
variables, regvar, and the lag selection method, selectlags.

With regard to the deterministic components, the itsd argument must be
a vector with the following structure: c(0,0,c(0)). If the first and/or second
elements are set equal to 1, it indicates that an intercept and/or linear trend,
respectively, are included. The third element is a vector indicating which
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seasonal dummies should be included. If no seasonal dummies are desired it
must be set equal to zero. For example, regular=c(1,0,c(1,2,3)) would
include an intercept, no trend, and the first three seasonal dummies.

Any other regressor variable, for example a dummy variable previously
defined, can be included indicating the name of the corresponding matrix
object in the regvar argument. By default this argument is set equal to
zero.

Finally, selectlags is a list object indicating the method for choosing
lags, mode, and the maximum number of lags allowed in the regression, Pmax.
Available methods are "aic", "bic", and "signf". The first two methods
fit two regressions: one with the maximum number of lags and another one
removing the lag of the highest order. Then, if the first regression has an AIC
or BIC lower than the second, the lag of the highest order is kept, otherwise
it is dropped. This procedure is repeated for all the lags. "signf" fits a
regression with the maximum number of lags and drops those that are not
significant at the 10% level of significance. Then, the regression is fitted
again with the significant lags. This procedure is repated until all the lags
included in the regression are significant. The user can also define mode as a
numeric vector indicating the desired lag orders.

7.2.1 Deterministic components

For the designe of the auxiliar regression in unit root tests, the deterministic
components that should be included into it must be decided before. There
is a major problem when making this choice. The distribution of the cor-
responding statistics is not the standard one but it depends on which unit
roots exist. Nevertheless, it is known that, in the presence of unit roots, the
critical values of those distributions move towards the extreme sides, hence,
if the stastistic lies between the standard critical values the null hypothesis
cannot be rejected.

We will start fitting the ADF regression with all the possible deterministic
components; an intercept, trend, and three out of the four seasonal dummies,
to avoid multicollinearity. It is worth looking at the extended report on the
test, summary, where the estimates of all the coefficients is showed. Here, to
save space, only the regvarcoefs slot containing the coefficients we are now
concerned with is showed. The remaining of the output will be discussed
later.

> adf.out <- ADF.test(wts = gergnp, itsd = c(1, 1, c(1, 2, 3)),

+ selectlags = list(mode = "signf", Pmax = 8))

> round(adf.out@regvarcoefs, 2)
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Estimate Std. Error t value Pr(>|t|)

Intercept 29.56 8.27 3.57 0.00

Trend 0.33 0.09 3.57 0.00

SeasDummy.1 -8.14 2.60 -3.13 0.00

SeasDummy.2 0.41 2.90 0.14 0.89

SeasDummy.3 2.17 2.29 0.95 0.35

Dickey and Fuller (1981) obtain the distribution of the t-statistic for an
intercept and a linear trend, as well as some joint F -statistics. Taking as
reference Tables II and III in Dickey and Fuller (1981) the critical values for
an intercept and a trend are 3.11 < 3.57 and 2.79 < 3.57, respectively, with
a 5% significance level, hence non-significance hypothesis is rejected. With
regard to seasonal dummies, it cannot be rejected non-significance for two
of them. Only the t-statistic of the first seasonal dummy, −3.13, is bigger
than the critical value ±1.96, taking as reference the Normal distribution.
Since critical values in Dickey and Fuller (1981) do not considere the effect of
seasonal dummies, it is advisable to check the same estimates in the HEGY
regression. This is done in the code below.

> hegy.out <- HEGY.test(wts = gergnp, itsd = c(1, 1, c(1, 2, 3)),

+ selectlags = list(mode = "signf", Pmax = 8))

> round(hegy.out@regvarcoefs, 2)

Estimate Std. Error t value Pr(>|t|)

Intercept 25.49 8.74 2.92 0.00

Trend 0.26 0.10 2.51 0.01

SeasDummy.1 -9.77 2.63 -3.71 0.00

SeasDummy.2 -3.95 3.31 -1.19 0.24

SeasDummy.3 -0.39 2.68 -0.15 0.88

It can be noticed that the t-statistics for the intercept and trend moves to
the non-rejection area. The coefficients of the seasonal dummies are negative.
This is what we could expect, since the Buys-Ballot plot showed that the level
of the series in the fourth season, the omitted seasonal dummy, tends to be
higher than in the other seasons, specially in the second half of the sample.

On the other hand, it should be noticed that the effect of an intercept upon
a seasonally differenced series is similar to a linear trend in the original series.
A linear trend entails a near-exponential growth, whereas seasonal dummies
entail that each season evolves along a linear trend. Dı́az-Emparanza and
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López-de Lacalle (2004) explain these results. In this sense, graphics in the
previous section showed that the long run of the series evolves rather straight,
barring some recessions. At the same time, Buys-Ballot plot revealed that
seasonal paths display a slight trend.

Allowing for the graphical analysis and the results mentioned here, it is
feasible to consider an intercept and seasonal dummies with no trend in the
auxiliar regressions of the tests.

7.2.2 Long run unit root tests

The KPSS.test function performs both null hypotheses described in 7.2, one
in which data are level stationary, and the other where data are stationary
around a linear trend. By default, the lag truncation parameter to compute
the variance of the residuals is set equal to 3

√
n/13, where n is the number of

observations. However, it is a good practice to check the test for a sequence
of different values.

Although we have decided not to consider a deterministic linear trend,
there is no harm in taking a look at both statistics. In order to it, two
object are created, kpss.level and kpss.trend. In the example below
different lag truncation parameters are considered, from 0 to 4. The functions
urt.xtable and save.table may be useful to this end. Given an object of
class kpssstat, these functions compute the KPSS test for lags three times
lower than that in the kpssstat object and three higher than that. The
results are printed to the console or to a LATEX file.

> kpss.level <- kpss.trend <- rep(NA, 5)

> for (i in 0:4) {

+ kpss.level[i + 1] <- KPSS.test(wts = gergnp, ltrunc = i)@levelst

+ kpss.trend[i + 1] <- KPSS.test(wts = gergnp, ltrunc = i)@trendst

+ }

> print(data.frame(Trunc = c(0:4), Level = round(kpss.level, 2),

+ Trend = round(kpss.trend, 2)))

Trunc Level Trend

1 0 11.94 0.57

2 1 6.12 0.41

3 2 4.16 0.38

4 3 3.16 0.34

5 4 2.55 0.27
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The critical values for the 5% level of siginificance are 0.46 and 0.15, re-
spectively. Regardless to the lag truncation parameter, both statistics reject
their null hypotheses at the 5% level of significance. This entails that the
long run is guided by a random walk.

As a complement, the null hypothesis of a random walk can be tested
with the ADF.test function. We have already described the arguments of
these functions. Here, it is clearer to show the output according to the show

format.

> adf.out <- ADF.test(wts = gergnp, itsd = c(1, 0, c(1, 2, 3)),

+ selectlags = list(mode = "signf", Pmax = 8))

> show(adf.out)

--------- ------ - ------ ----

Augmented Dickey & Fuller test

--------- ------ - ------ ----

Null hypothesis: Unit root.

Alternative hypothesis: Stationarity.

----

ADF statistic:

Estimate Std. Error t value Pr(>|t|)

adf.reg 0.001 0.006 0.098 0.1

Lag orders: 1 2 4 7

Number of available observations: 116

Fuller (1976) (pp.373) collects critical values for the null hypothesis of a
long-run unit root. It must be noted again that neither of these tables refer
to the case in which an intercept and seasonal dummies are included. Never-
theless, the value of the statistic, 0.098, is close to zero and hence, relatively
departed from either of the critical values; −1.95, when none deterministic
components are included, −2.89, when an intercept is included, and −3.45,
if an intercept and an linear trend are included, for a significance level equals
to 5%. Therefore, the unit root hypothesis cannot be rejected, confirming
the results of the KPSS statistics.

The p-values for the test statistics are based on the tables from the original
papers of each test. The approx function in the stats package is used to
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interpolate the p-value according with the sample size. The critical values
considered allow for significance levels ranged between 0.01% and 0.10%. If
the interpolated p-value lies beyond these confidence levels a warning message
is reported.

The p-values for regressors different from the test statistics reported in
the original table, that is, deterministic components and lags, are the default
values provided by lm and assume a Normal distribution for large samples.

Finally, note that lags of order 1, 2, 4, and 7 has been included, yielding
a relatively parsimonious model and being reasonable for quartely series.
Taking other methods for choosing lags, the conclusions do not change. The
reader can check that after taking first differences both statistics lead to
conclude that there is not another long run unit root.

7.2.3 Seasonal unit root tests

In this subsection, following the protocol described in Section 5, CH and
HEGY statistics are computed to detect seasonal unit roots. As it was men-
tioned, taking into account that outliers such as level shifts may distort the
distribution of the statistics, recursive testing is proposed to assess the ro-
bustness of the results.

The user will find it useful the recursive testing option available in
the menu of the GUI for these tests. This will save the user from having to
write a loop in which the test is computed for different sample sizes. Some
functions are also available from the console to have a greater control over
this procedure. First, we will see how to run CH.test and HEGY.test and
the way in which the results are displayed.

The example below tests the null hypothesis of stationarity for seasonal
cycles by means of the CH joint test. As usual, wts is a ts object, in our
case gergnp. The argument frec is a 0-1 vector of the same length as the
number of seasonal frequencies, in quarterly series: π

2
and π, and in monthly

series: π
6
, π

3
, π

2
, 2π

3
, 5π

6
, and π, in this order. The cycles of the corresponding

frequencies that are set to 1 in the vector frec are tested for stationarity.
As we have detected a long-run unit root, a first order lag is included in

the regression, f0=1. A deterministic trend turned out to be non-significant
in our analysis, hence, a linear trend is not considered, DetTr=FALSE. Finally,
the lag truncation parameter for estimating the residuals covariance matrix is
the default value, S (n/100)0.25, where S is the periodicity and n the number
of observations.

> ch.out <- CH.test(wts = gergnp, frec = c(1, 1), f0 = 1, DetTr = FALSE,

+ ltrunc = NULL)

> ch.out
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------ - ------ ----

Canova & Hansen test

------ - ------ ----

Null hypothesis: Stationarity.

Alternative hypothesis: Unit root.

Frequency of the tested cycles: pi/2 , pi ,

L-statistic: 2.279

Lag truncation parameter: 4

Critical values:

0.10 0.05 0.025 0.01

0.846 1.01 1.16 1.35

The CH statistic, 2.279, must be compared with a Von Mises distribution
with three degrees of freedom.9 For a 5% level of significance the critical
value is 1.01 < 2.279, hence, the null hypothesis of stationary seasonal cycles
is rejected and the unit roots −1 and ±i exist, according to this test.

To look for more evidence in favour of the previous result, we will test
for seasonal roots by means of the recursive procedure. According to this
strategy, the statistics are computed for different subsamples, so that the
effect of prospective outliers on the results can be assessed.

The CH.rectest and HEGY.rectest functions are used in the code below.
In addition to the arguments in CH.test and HEGY.test, the type and length
of the subsamples are defined and some information on the iteration progress
is requested as well.

The number of observations in each subsample or in the starting subsam-
ple, depending on the type of subsamples, is set by the argument nsub. Three
types of subsamples can be considered: “backw”, the statistic is computed for
the last nsub observations and then one year backwards is added until the
beginning of the sample; “forw”, the statistic is computed for the first nsub

observations and then one year forwards is added until the end of the sample;
“moving”, the statistic is computed over moving subsamples of length nsub.

Three levels of information can be printed during the procedure. The
argument trace is a list object indicating what trace of the iteration progress

9Remember that three roots are tested −1 and ±i.
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must be printed:10 if remain is equal to 1, the percentage of the whole
procedure that has been completed is printed; if plot is equal to 1, a plot
with the computed statistics is displayed; if elaps is equal to 1, how much
time was required to complete the whole procedure is reported.

chrec.pi <- CH.rectest(wts=gergnp, type="backw", nsub=32,

+ frec=c(0,1), f0=1, DetTr=FALSE, ltrunc=NULL,

+ trace=list(remain=1, plot=0, elaps=1))

hegyrec.pi2 <- HEGY.rectest (wts=gergnp, type="backw", nsub=32,

+ itsd=c(1,0,c(1,2,3)), selectlags=list(mode="signf", Pmax=NULL),

+ trace=list(remain=1, plot=0, elaps=1))

The first example tests for stationary cycle of frequency π and the second
example tests for the seasonal unit roots ±i. To see the output of the recusive
test, show and plot methods can be used. In the examples, 32 observations
have been taken for the initial subsample. When more regressors are included
in the model, for example in the HEGY regression for monthly data with
seasonal dummies and lags of high orders, that size may not be enough data
to fit the model. In that case, larger subsamples should be considered or a
lower maximum lag, Pmax, could be tried. Here, to save space, results are
collected in Tables 4 and 5.

These tables can be built by means of the recch.save.xtable and rech-

egy.save.xtable functions,11 which are a mixture of the functions for re-
cursive testing and the functions xtable and print.xtable in the xtable
package. In fact, the arguments are the union of the arguments in those
functions.

recch.save.xtable (wts=gergnp, nsub=32, frec=c(0,1), f0=1, DetTr=FALSE,

+ ltrunc=NULL, trace=list(remain=1, plot=0, elaps=1),

+ caption="CH recursive test. Cycle of frequency $\\pi$",

+ label="Tchrec", align="lcrlcrl", type="latex", table.placement="ht",)

rechegy.save.xtable (wts=gergnp, nsub=32, itsd=c(1,0,c(1:3)),

+ refstat="Fpi3:4", selectlags=list(mode="signf", Pmax=NULL),

+ trace=list(remain=1, plot=0, elaps=1), label="Thegyrec",

+ caption="HEGY recursive test. Cycle of frequency $\\pi/2$",

+ align="lcrlcrl", type="latex", file=NULL, table.placement="ht")

10In windows operative systems, the option Buffered output in the Misc menu must
be active for this information to be printed while the process is running.

11These functions are implement for the ADF and KPSS tests as well. See
recadf.save.xtable and reckpss.save.xtable in the help pages of the package.
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This utility is not implemented in the GUI menu. The Utilities -

LaTeX output menu refers to objects created after running the ADF, KPSS,
HEGY, or CH tests. When these functions are run via the GUI, results are
stored in the .out object. In this way, the main results of these functions
can be exported to a LATEX table.

Following with the example, after some minor changes the code above
creates Tables 4 and 5.

Table 4: CH recursive test. Cycle of frequency π
Sample Stats Sample Stats

1960:1−1967:4 0.62 ** 1983:1−1990:4 0.10
1960:1−1968:4 0.66 ** 1982:1−1990:4 0.10
1960:1−1969:4 0.75 *** 1981:1−1990:4 0.11
1960:1−1970:4 0.91 *** 1980:1−1990:4 0.21
1960:1−1971:4 0.93 *** 1979:1−1990:4 0.15
1960:1−1972:4 0.92 *** 1978:1−1990:4 0.11
1960:1−1973:4 0.83 *** 1977:1−1990:4 0.10
1960:1−1974:4 0.64 ** 1976:1−1990:4 0.09
1960:1−1975:4 0.76 *** 1975:1−1990:4 0.17
1960:1−1976:4 0.84 *** 1974:1−1990:4 0.33
1960:1−1977:4 0.94 *** 1973:1−1990:4 0.50 *
1960:1−1978:4 1.04 *** 1972:1−1990:4 0.64 **
1960:1−1979:4 1.15 *** 1971:1−1990:4 0.81 ***
1960:1−1980:4 1.16 *** 1970:1−1990:4 0.76 ***
1960:1−1981:4 1.20 *** 1969:1−1990:4 0.83 ***
1960:1−1982:4 1.32 *** 1968:1−1990:4 0.92 ***
1960:1−1983:4 1.43 *** 1967:1−1990:4 0.99 ***
1960:1−1984:4 1.39 *** 1966:1−1990:4 1.11 ***
1960:1−1985:4 1.47 *** 1965:1−1990:4 1.21 ***
1960:1−1986:4 1.60 *** 1964:1−1990:4 1.34 ***
1960:1−1987:4 1.69 *** 1963:1−1990:4 1.46 ***
1960:1−1988:4 1.75 *** 1962:1−1990:4 1.59 ***
1960:1−1989:4 1.84 *** 1961:1−1990:4 1.73 ***
1960:1−1990:4 1.83 *** 1960:1−1990:4 1.83 ***

Table 4 reports the CH statistics computed recursively for the seasonal
unit root−1. To save space the table for the seasonal unit roots±i is omitted.
The significance levels are labeled as follows: “0.01”, “***”; “0.025”, “**”;
“0.05”, “*”; and “0.10”, “.”. Stationarity in the semiannual cycle is rejected
in most of the subsamples. The reader can check that the same happens for
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the annual cycle. In spite of such a strong evidence, it must be noted that
those observations at the beginning of the sample are the main source of
non-stationarity. If the latest subsamples are considered, stationarity cannot
be rejected for either of the seasonal cycles.

Keeping in mind the decision tree in Figure 1, page 12, we will get more
information computing the HEGY statistics for the seasonal unit roots ±i,
Table 5. The table for the seasonal unit root −1 is omited. The reader may
check that the seasonal unit root −1 is not rejected in most of the subsamples
at the 5% level of significance.

According to the pattern of the recursive HEGY statistics in Table 5, we
may hesitate to consider the presence of the ±i unit roots, since the null
hypothesis is rejected in some subsamples. To get a further insight into the
analysis of these roots, we will compute the HEGY statistics including a
dummy that stands for a structural shift halfway the sample, from 1968 to
1977.

The Mdates function helps to build such dummy. It searches for the
position in the sample of a given date. Setting the argument yso to 1968.1
and 1977.1, this function looks these dates up in a quarterly calendar that
collects all the observation dates in the original time series and stores them
in the objects obs1 and obs2. The dummy called Mdumm is then built just
setting to 1 the elements from obs1 to obs2 in a column-matrix made up of
zeros.

> obs1 <- Mdates(gergnp, yso = c(1968, 1))@obs

> obs2 <- Mdates(gergnp, yso = c(1977, 1))@obs

> Mdumm <- matrix(0, nrow = length(gergnp), ncol = 1)

> Mdumm[obs1:obs2, 1] <- 1

> hegy.out <- HEGY.test(wts = gergnp, itsd = c(1, 0, c(1, 2, 3)),

+ regvar = Mdumm)

> hegy.out

---- ----

HEGY test

---- ----

Null hypothesis: Unit root.

Alternative hypothesis: Stationarity.

----

HEGY statistics:
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Table 5: HEGY recursive test. Cycle of frequency π/2
Sample Stats Sample Stats

1960:1−1967:4 9.16 ** 1983:1−1990:4 3.48
1960:1−1968:4 10.85 *** 1982:1−1990:4 3.28
1960:1−1969:4 3.14 1981:1−1990:4 5.39
1960:1−1970:4 11.15 *** 1980:1−1990:4 6.35 .
1960:1−1971:4 1.55 1979:1−1990:4 6.74 *
1960:1−1972:4 6.66 * 1978:1−1990:4 1.76
1960:1−1973:4 12.41 *** 1977:1−1990:4 1.92
1960:1−1974:4 17.98 *** 1976:1−1990:4 13.02 ***
1960:1−1975:4 14.93 *** 1975:1−1990:4 6.25 .
1960:1−1976:4 9.98 *** 1974:1−1990:4 20.87 ***
1960:1−1977:4 8.19 ** 1973:1−1990:4 20.89 ***
1960:1−1978:4 1.58 1972:1−1990:4 24.43 ***
1960:1−1979:4 1.98 1971:1−1990:4 26.65 ***
1960:1−1980:4 1.67 1970:1−1990:4 25.63 ***
1960:1−1981:4 1.91 1969:1−1990:4 10.33 ***
1960:1−1982:4 2.18 1968:1−1990:4 7.31 *
1960:1−1983:4 2.11 1967:1−1990:4 6.03 .
1960:1−1984:4 2.82 1966:1−1990:4 6.88 *
1960:1−1985:4 4.50 1965:1−1990:4 5.72 .
1960:1−1986:4 5.11 1964:1−1990:4 5.64 .
1960:1−1987:4 4.48 1963:1−1990:4 6.07 .
1960:1−1988:4 4.77 1962:1−1990:4 6.01 .
1960:1−1989:4 4.94 1961:1−1990:4 5.12
1960:1−1990:4 5.28 1960:1−1990:4 5.28

Stat. p-value

tpi_1 0.603 0.1

tpi_2 -2.400 0.1

Fpi_3:4 5.250 0.1

Fpi_2:4 5.422 NA

Fpi_1:4 4.161 NA

Lag orders: 1

Number of available observations: 119
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The results12 show that a prospective shift between 1968 and 1977 does
not change the results for the whole sample. The statistics for the seasonal
roots −1 and ±i are −2.40 and 5.25, respectively, and remain in the area
where the null hypothesis is maintained. In fact, the generic dummy is not
significant, as the t−statistic, 0.70, suggests (See the slot regvarcoefs in
hegy.out or summary(hegy.out)).

To summarize, the following model collects the features found in the anal-
ysis carried out through this example.

(1− L)(1 + L)(1 + L2) yt ≡ ∆ yt = α+
4∑

i=1

γiDi,t + εt .

The functions introduced in this paper allowed us to decompose the sea-
sonal differencing filter and to test whether the modulus of each one of the
roots are equal to unity. Likewise, tests for stationary cycles were carried out
as well. A graphical analysis was useful for a first glance at the data and to
decide the deterministic regressors in the auxiliar regressions of the tests.

12In this version, the p-values for the Fpi 2 : 4 and Fpi 1 : 4 statistics in the HEGY
tests are not reported.

31



Figure 3: Real GNP in Germany. Correlograms
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Figure 4: Real GNP in Germany. Seasonal cycles
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Figure 5: Real GNP in Germany. Buys-Ballot plot
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DT 200402, EAII, EAIII, FAE e IEP: Universidad del Páıs Vasco.
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