
tsoutliers R Package for

Detection of Outliers in Time Series

Javier López-de-Lacalle

https://jalobe.com

DRAFT VERSION: February, 2019

Abstract

Time series data often undergo sudden changes that alter the dynamics of the data transitory

or permanently. These changes are typically non-systematic and cannot be captured by standard

time series models. That’s why they are known as exogenous or outlier effects. Detecting outliers

is important because they have an impact on the selection of the model, the estimation of

parameters and, consequently, on forecasts. An automatic procedure described in the literature

to detect outliers in time series is implemented in the tsoutliers R package.

Key words: outliers, time series, R.

1 News

For the complete history see the NEWS file in the sources or here:

Main changes in version 0.6-7:

• The utilities for structural time series models have been disabled. The package stsm and the

function KFKSDS::KF are no longer imported. Those utilities were an experimental version

that extended the procedure for detection of outliers in ARIMA models to other models in

state space form. If interested in the code, check previous versions or contact the maintainer.

• Fix in outliers.effects: computations were not correct for the case of innovational outliers.

• Tentative approach enabled by argument check.rank in discard.outliers in order to deal with

perfect collinearity among the regressor variables.

• Further fixes in calendar.effects to make it independent of the locale.

Main changes in version 0.6-6:

1

https://jalobe.com
https://cran.r-project.org/web/packages/tsoutliers/NEWS

• Fix in function calendar.effects. By using weekday as a decimal number instead of a

character, the function now works regardless of the the locale in use.

• Fix in locate.outliers.oloop. If the series contains NAs, the NAs in the residuals that are

passed to outliers.tstatistics are now imputed with the mean of the remaining residuals;

before, those NAs were propagated throughout the t-statistics preventing the detection of

outliers at some points.

• The function remove.outliers has been renamed as discard.outliers. The arguments

remove.method and remove.cval in function tso have been renamed as discard.method

and discard.cval. The old names still work (except in tso0), but a warning is given as they

will be most likely be ignored in a future version.

Main changes in version 0.6-5:

• The outliers detected at each iteration of the procedure are checked so that outliers identified

at consecutive time points are discarded keeping the outlier with the highest t-statistic in

absolute value. This is done for all types of outliers, before it was done only for LS.

• The following change in R 3.2.1, arima(*, xreg = .) (for d >= 1) computes estimated variances

based on the number of effective observations as in R version 3.0.1 and earlier, may lead to

discrepancies in the results returned by tso compared with R version prior to 3.2.1 and later

to 3.0.1.

2 Introduction

Time series data often undergo sudden changes that affect the dynamics of the data transitory or

permanently. Sometimes, the practitioner may have some a priori information about the existence

of these effects. A new regulation, strike periods, exceptional natural phenomena or a change in

the methodology used to collect the data are some examples of events that may alter the overall

dynamics of the data. In other cases, there is no such clear cut information available. The informa-

tion may be unknown by the practitioner or it may not be feasible to carry out a review of all the

historical events related to the context of the data. Regardless of their known or unknown source,

these changes are typically non-systematic and cannot be captured by standard time series models

(autoregressive integrated moving average models or structural time series models). A preliminary

analysis of the data may reveal the existence of exceptional events that do not respond to patterns

that can be captured by time series models, i.e. effects that are exogenous to the model. This

2

analysis can be cumbersome or unfeasible if the data set is large. Moreover, sometimes these effects

do not stand out in graphical representations or ad hoc auxiliar regressions and remain masked

within the overall dynamics of the data. When some a priori knowledge about these effects exists,

then a regressor variable can be explicitly defined and included in the model. These regressors are

known as intervention variables. When this exogenous effect is not related to any known event then

we say that there is an outlier in the time series. We consider five types of outliers: innovational

outlier, additive outlier, level shift, temporary change and seasonal level shift. Sometimes when the

time and shape of an outlier is detected an ex post explanation can be found to it. In that case,

the general structure of the outlier regressor should be replaced by the corresponding intervention

variable.

Detecting and correcting the effect of outliers is important because they have an impact on

the selection of the model, the estimation of parameters and, consequently, on forecasts and other

results pursued by the analysis such as seasonal adjustment. In practice, we observe that many time

series are affected by outliers and they are more common than intervention variables, especially

when a large an heterogeneous set of time series is analysed, as it is the case of the analyses carried

out by National Institutes of Statistics and Central Banks.

An automatic procedure described in the literature to detect and adjust the series for outliers

is implemented in the package tsoutliers of R.

The remaining of the paper is organised as follows. ARIMA and structural time series models

are briefly introduced in Section 3. The types of outliers considered in tsoutliers are described

in Section 4. Section 5 described the procedure to detect outliers. The performance of the imple-

mentation and a comparison with other specialised software is discussed by means of simulations

exercises in Section 6. The usage of the package is illustrated with real examples in Section 7.

Section 8 concludes.

3 Time series models

3.1 ARIMA time series models

A stationary ARMA model of orders (p, q) for a series yt observed at time points t = 1, 2, . . . , n

can be defined as follows:

yt =
p∑
i=1

φiyt−i + at +
q∑
i=1

θiat−i , where at ∼ NID(0, σ2a) ,

or more concisely

φ(B)yt = θ(B)at , where B is the lag operator.

3

All the roots of the autoregressive polynomial, φ(B), and the moving average polynomial, θ(B),

lie outside the unit circle. The parameters of the model α1,...,p, θ1,...,q and σ2a can be estimated by

maximum likelihood (see for instance [1], [2, Chapter 5], and [10, Chapter 22]).

For non-stationary data, the observed series yt is transformed by means of a differencing filter

and then an ARMA model is defined for the differenced data. An ARIMA model for the observed

series yt is defined as follows:

φ(B)α(B)yt = θ(B)at . (1)

The differencing filter that renders the data stationary is given by α(B), which is an autoregressive

polynomial that contains all its roots on the unit circle.

3.1.1 Automatic ARIMA model selection

The detection of outliers can be conducted along with the model selection procedure implemented

in the forecast package. For details see [6, 11].

3.2 Structural time series models

The basic structural model (BSM) is a pure variance structural model commonly used in applica-

tions. This model plays a central role in the approach advocated in [5] for time series analysis. A

detailed view of the features and theoretical properties of this model can be found, for instance, in

[5, Chapter 2], [2, Chapter 8] and [4, § 3.2]. The model is defined as follows:

observed series: yt = µt + γt + εt, εt ∼ NID(0, σ2ε);

latent level: µt = µt−1 + βt−1 + ξt, ξt ∼ NID(0, σ2ξ);

latent drift: βt = βt−1 + ζt, ζt ∼ NID(0, σ2ζ);

latent seasonal: γt =
∑s−1
j=1−γt−j + ωt, ωt ∼ NID(0, σ2ω),

for t = s, . . . , n, where s is the periodicity of the data.

The BSM encompasses models that are common in applications: the local level model, that

consists of a random walk with a deterministic drift, β0, plus a noise component, εt; the local trend

model, where the drift follows a random walk. Setting σ2ω = 0 yields a model with deterministic

seasonality. Setting also γ1 = . . . = γs−1 = 0 removes the seasonal component and gives the local

trend model. Adding the restriction σ2ζ = 0 yields the local level model.

The state space form of the BSM is given by the following representation:

yt = Zαt + εt, εt ∼ NID(0, σ2ε),

αt = Tαt−1 +Rηt, ηt ∼ NID(0, V),

α0 ∼ N(a0, P0),

with V =


σ2ξ 0 0

0 σ2ζ 0

0 0 σ2ω

 ,

4

for t = 1, . . . , n. For s = 4, the matrices of this representation are defined as follows:

yt =

[
1 0 1 0 0

]
αt + εt,

αt ≡



µt

βt

γt

γt−1

γt−2


=



1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0


×



µt−1

βt−1

γt−1

γt−2

γt−3


+



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


×


ξt

ζt

ωt

 .

The initial state vector, a0, and its covariance, P0, can be chosen beforehand or included in the

set of parameters to be estimated. Given the variance parameters, the Kalman filter and smoother

can be applied to extract an estimate of the the latent components (level, trend and seasonal).

4 Types of outliers

A general representation of an outlier can be given by the following expression: L(B)I(tj) , where

L(B) is a polynomial of lag operators and I(tj) is an indicator variable that takes on the value

1 at time t = j when the outlier springs and the value 0 elsewhere. We consider five types of

outliers: innovational outlier (IO), additive outlier (AO), level shift (LS), temporary change (TC)

and seasonal level shift (SLS). The polynomial L(B) for each type of outlier is defined as follows:

IO: L(B) =
θ(B)

α(B)φ(B)
; LS: L(B) =

1

(1−B)
; SLS: L(B) =

1

(1−Bs)
;

AO: L(B) = 1 ; TC: L(B) =
1

(1− δB)
.

(2)

The value of δ is usually set equal to 0.7 and s is the periodicity of the data (e.g. 4 in quarterly

data and 12 in monthly data). Each of them has a specific structure and influence on the data.

Figure 1 shows a unit impulse for each type of outlier occurring at time point t = 10.

5 Automatic detection procedure

The procedure described in [3] for the automatic detection of outliers is implemented in the package

tsoutliers. Next, we introduce the procedure following the notation of the original reference. At

the same time, we give an insight into the implementation in package tsoutliers by showing and

discussing the main parts of the code.

Let us define y∗t as the observed series subject to m outliers with weights w. The ARIMA model

5

Figure 1: Unit impulse for different types of outliers

1 10 20 30

0.0

0.5

1.0

AO: additive outlier

1 10 20 30

0.0

0.5

1.0

TC: temporary change

1 10 20 30

0.0

0.5

1.0

LS: level shift

1 10 20 30

0.0

0.5

1.0

SLS: seasonal level shift (quarterly data)

1 10 20 30

−0.5

0.0

0.5

1.0

IO: innovational outlier. ARMA(3,2)

1 10 20 30

−0.5

0.0

0.5

1.0

IO: innovational outlier. ARIMA(0,1,1)(0,1,1)

for the observed series is written as:

y∗t =
m∑
j=1

ωjLj(B)It(tj) +
θ(B)

φ(B)α(B)
at . (3)

The estimated residuals, which are contaminated with the outliers, are given by:

π(B)y∗t ≡ êt =
m∑
j=1

ωjπ(B)Lj(B)It(tj) + at , (4)

where the coefficients of the power series expansion π(B) =
∑∞
i=0 πiB

i can be determined from the

relation (see for instance [2, Chapter 3]):

π(B) =
φ(B)α(B)

θ(B)
.

Since all the roots of θ(B) lie outside the unit circle, the coefficients πi satisfy
∑∞
i=0 |πi| < ∞ and

vanish to zero.

Equations (3) and (4) constitute the grounds of the procedure for the detection of outliers,

which consists of the following stages:

stage I: Locate outliers. Given an ARIMA model fitted to the data, outliers are detected and

located by checking the significance of all types of outliers at all possible time points. This is

done by means of the corresponding t-statistics in the regression equation (4).

6

stage II: Remove outliers. Given a set of potential outliers, an ARIMA model is chosen and fitted

according to the regression equation (3). The significance of the outliers is reassessed in the

new fitted model. If an ARIMA selection procedure is used a new model may be selected

at this stage. Those outliers that are not significant are removed from the set of potential

outliers.

stage III: Iterate stages I and II, first for the original series and then for the adjusted series.

5.1 Stage I: locate outliers

Replacing in equation (4) L(B) by the definition of each type of outlier defined above and multi-

plying by π(B), we can see that the equation becomes, respectively for each type of outlier:

IO: êt = ωIt(tj) + at , AO: êt = ωπ(B)It(tj) + at ,

LS: êt = ω
π(B)

1−B
It(tj)at , TC: êt = ω

π(B)

1− δB
It(tj)at .

(5)

[3] adopt the following t-statistics to identify and locate outliers:

τ̂k =
ω̂k(tj)

σ̂a
(∑n

i=tj x
2
k,i

)1/2 , with ω̂k =

∑n
i=tj êtxk,i∑n
i=tj x

2
k,i

,

where k stands for each type of outlier, k = IO, AO, LS, TC. [3] derive the structure of each

regressor xk = π(B)Lj(B)It(tj) employed in equation (4). The residual standard deviation σ̂a is

estimated as the median absolute deviation (MAD) defined as:

σ̂a = 1.483×median (|ê− ẽ|) ,with ẽ = median(ê) .

At first glance, the computation of all the τ statistics may seem more cumbersome than it

actually is. In principle, the above regression equations should be run for all types of outliers and

for all the potential locations of outliers tj = 1, 2, . . . , n. However, we can take advantage of the

fact that, given a type of outlier, the regressors xk for different time points tj are shifted versions

of xk defined for tj = 1. As we shall see, we do not need to explicitly build all the regressors and

run a regression for each time point tj and for each type of outlier.

The code below loads the required packages and generates a series from an ARIMA(1,0,1) model

with three exogenous shocks (two additive outliers and one level shift). In the sequel, we will use

this simulated series to illustrate the procedure.

library("tsoutliers")

set.seed(123)

7

y <- arima.sim(model = list(ar = 0.7, ma = -0.4), n = 120)

y[15] <- -4

y[45] <- 5

y[80:120] <- y[80:120] + 5

y <- round(y, 2)

Next, we start the procedure. First, an ARIMA model is chosen and fitted by means of the

function auto.arima available in the package forecast. No drift is included in the model and the

Bayesian information criterion (BIC) is used to select the model. The autoregressive and moving

average coefficients as well as the residuals and its length are extracted from the fitted model. The

standard deviation of residuals, σ̂a, is computed by means of the MAD method defined above.

fit <- forecast::auto.arima(x = y, allowdrift = FALSE, ic = "bic")

pars <- coefs2poly(fit)

resid <- residuals(fit)

n <- length(resid)

sigma <- 1.483 * quantile(abs(resid - quantile(resid, probs = 0.5)), probs = 0.5)

Upon the information obtained from the fitted model we can compute the τ statistics as follows.

The coefficients of π(B) are obtained by means of the function ARMAtoMA from the stats package.

Notice that this function computes the coefficients in the relation ψ(B) = θ(B)
φ(B) = 1

π(B) . After

changing the sign of the parameters and passing the AR coefficients as the MA coefficients and

vice versa, this function returns the coefficients of the polynomial π(B). Looking at equations (5),

we can see that the τ statistics related to the innovational outlier can be easily obtained as the

residuals divided by σ̂a.

picoefs <- c(1, ARMAtoMA(ar = -pars$macoefs, ma = -pars$arcoefs, lag.max = n-1))

tauIO <- resid / sigma

The τ statistics for the AO outliers are obtained taking advantage of the fact that the regressors

involved in equation (5) for each time point t = tj are shifted versions of the case I(tj = 1).

padded.resid <- c(resid, rep(0, n-1))

xy <- as.vector(na.omit(filter(x = padded.resid,

filter = rev(picoefs), method = "conv", sides = 1)))

xx <- rev(cumsum(picoefs^2))

tauAO <- xy / (sigma * sqrt(xx))

Similarly, we obtain the τ statistics related to the LS and TC after filtering π(B) through 1/(1−B)

and 1/(1− δB), respectively.

di.picoefs <- diffinv(picoefs)[-1]

xy <- as.vector(na.omit(filter(x = padded.resid,

filter = rev(di.picoefs), method = "conv", sides = 1)))

8

xx <- rev(cumsum(di.picoefs^2))

tauLS <- xy / (sigma * sqrt(xx))

delta <- 0.7

didelta.picoefs <- filter(x = picoefs, filter = delta, method = "rec")

xy <- as.vector(na.omit(filter(x = padded.resid,

filter = rev(didelta.picoefs), method = "conv", sides = 1)))

xx <- rev(cumsum(didelta.picoefs^2))

tauTC <- xy / (sigma * sqrt(xx))

We have seen that the computation of all the τ statistics involves fewer computations than may

seem necessary at first glance and it can be done without explicit loops. Now, let’s look at some

of the values that we obtained for these statistics.

tau.stats <- data.frame(IO = tauIO, AO = tauAO,

LS = tauLS, TC = tauTC, row.names = NULL)

round(tau.stats[c(14:16,44:46,78:82),], 3)

IO AO LS TC

14 1.119 1.386 0.105 -0.406

15 -4.103 -4.797 -0.930 -2.397

16 2.322 1.613 2.655 2.865

44 -0.535 -1.096 0.786 1.245

45 4.934 5.517 1.605 3.216

46 -2.883 -2.405 -2.518 -2.640

78 1.755 -0.028 4.411 1.595

79 1.215 -0.734 4.432 2.316

80 4.325 2.984 4.981 4.271

81 1.958 1.093 2.751 2.189

82 1.231 0.582 1.934 1.695

Those statistics that are in absolute value higher than a threshold identify the time point of a

potential outlier. The code below identifies those statistics that are higher than the threshold in

absolute value. Here, we use the threshold or critical value cval = 3.5. The potential outliers are

stored in a data.frame named mo containing the type of outlier, the observation index and the

t-statistic.

cval <- 3.5

indIO <- which(abs(tauIO) > cval)

indAO <- which(abs(tauAO) > cval)

indLS <- which(abs(tauLS) > cval)

indTC <- which(abs(tauTC) > cval)

mo <- data.frame(type = factor(c(rep("IO", length(indIO)),

rep("AO", length(indAO)), rep("LS", length(indLS)), rep("TC", length(indTC))),

levels = c("IO", "AO", "LS", "TC")),

ind = c(indIO, indAO, indLS, indTC),

tstat = c(tauIO[indIO], tauAO[indAO], tauLS[indLS], tauTC[indTC]))

cbind(mo[order(mo[,"ind"])[1:5],], " " = " ", mo[order(mo[,"ind"])[6:10],])

type ind tstat type ind tstat

9

1 IO 15 -4.102540 LS 79 4.432065

4 AO 15 -4.797319 IO 80 4.325142

2 IO 45 4.933745 LS 80 4.980832

5 AO 45 5.517405 TC 80 4.271211

6 LS 78 4.410770 <NA> NA NA

We can see that, for a given time point, there are more than one type outlier exceeding the threshold

(e.g. at t = 15, τIO = −4.103 and τAO = −4.797). Duplicates are removed keeping the type of

outlier with the highest t-statistic in absolute value.

for (i in mo[,"ind"][duplicated(mo[,"ind"])])

{

ind <- which(mo[,"ind"] == i)

moind <- mo[ind,]

if ("IO" %in% moind[,"type"]) {

tmp <- moind[which(moind[,"type"] != "IO"),]

} else

tmp <- moind[which.max(abs(moind[,"tstat"])),]

mo <- mo[-ind,]

mo <- rbind(mo, tmp)

}

mo[order(mo[,"ind"]),]

type ind tstat

4 AO 15 -4.797319

5 AO 45 5.517405

6 LS 78 4.410770

7 LS 79 4.432065

8 LS 80 4.980832

The function locate.outliers performs the location of outliers in the lines shown above except

that it adds one additional rule: when outliers of a given type are identified at consecutive time

points, then only the outlier related to the highest τ statistic is kept and the remaining are discarded.

Thus, if we run the function, we obtain the result stored above in object mo except that the LS at

times 78 and 79 are not included since |4.411| < |4.980| and |4.432| < |4.980|.

locate.outliers(resid, pars, cval, types = c("IO", "AO", "LS", "TC"))

type ind coefhat tstat

4 AO 15 -4.450352 -4.797319

5 AO 45 5.118357 5.517405

6 LS 78 3.057720 4.410770

7 LS 79 3.072482 4.432065

8 LS 80 3.452909 4.980832

The function locate.outliers is the baseline of stage I of the procedure. The complete

stage consists of an outer loop and an inner loop. The inner loop is implemented in the function

locate.outliers.iloop and can be sketched as follows:

10

mo.iloop <- NULL

maxit.iloop <- 4

iter <- 0

resid.iloop <- resid

while (iter < maxit.iloop)

{

mo <- locate.outliers(resid.iloop, pars, cval, types = c("IO", "AO", "LS", "TC"))

if (nrow(mo) == 0)

break

mo.iloop <- rbind(mo.iloop, mo)

oxreg <- outliers.regressors(pars, mo, n, weights = TRUE)

resid.iloop <- resid.iloop - rowSums(oxreg)

iter <- iter + 1

}

print(mo.iloop)

type ind coefhat tstat

4 AO 15 -4.450352 -4.797319

5 AO 45 5.118357 5.517405

6 LS 78 3.057720 4.410770

7 LS 79 3.072482 4.432065

8 LS 80 3.452909 4.980832

2 LS 77 -3.352594 -4.891855

3 LS 78 -4.008420 -5.848787

41 LS 79 -4.692708 -6.847250

51 LS 80 -3.803128 -5.549241

61 LS 81 -3.322974 -4.848636

71 LS 82 -2.428990 -3.544202

13 LS 76 6.276928 8.495680

14 LS 77 8.120745 10.991243

15 LS 78 9.674657 13.094428

16 LS 79 10.008111 13.545751

17 LS 80 10.377375 14.045541

18 LS 81 9.335869 12.635886

19 LS 82 7.862332 10.641488

20 LS 83 5.740041 7.769014

21 LS 84 3.765332 5.096291

22 TC 72 -3.852159 -4.245383

23 TC 73 -5.026003 -5.539050

24 TC 74 -5.777463 -6.367218

25 TC 75 -5.716360 -6.299879

35 LS 76 -23.413614 -32.311913

36 LS 77 -30.170841 -41.637211

37 LS 78 -34.050403 -46.991193

38 LS 79 -36.103541 -49.824623

39 LS 80 -35.508027 -49.002784

40 LS 81 -33.718535 -46.533200

411 LS 82 -30.339489 -41.869954

42 LS 83 -26.181571 -36.131827

43 LS 84 -21.279471 -29.366693

44 LS 85 -15.752958 -21.739839

11

45 LS 86 -11.707736 -16.157239

46 LS 87 -8.392412 -11.581932

47 LS 88 -6.377917 -8.801832

48 LS 89 -4.589172 -6.333278

49 LS 90 -2.583970 -3.566003

50 TC 67 3.466848 3.895746

511 TC 68 5.288947 5.943265

52 TC 69 6.938082 7.796421

53 TC 70 10.039979 11.282067

54 TC 71 15.776938 17.728770

55 TC 72 22.560787 25.351877

56 TC 73 26.918399 30.248587

57 TC 74 27.812573 31.253383

58 TC 75 23.253686 26.130497

cat(sprintf("number of iterations: %s\n", iter))

number of iterations: 4

First, the following objects are defined: mo.iloop stores the potential set of outliers; maxit.iloop

is the maximum number of allowed iterations; iter is the counter; and resid.iloop stores the

residuals adjusted for the outlier effects. Then the inner loop begins. At each iteration the effect of

the outliers on the residuals is removed and a new check for the presence of outliers is carried out.

The function outliers.regressors builds the regressors xk from equation (5) weighted for the

parameter estimates (column "coefhat" in object mo). The inner loop stops when no additional

outliers are detected or when a maximum number of allowed iterations is reached. The output

shows that only one iteration was required to identify outlying observations.

The outer loop is implemented in the function locate.outliers.oloop. The main parts of

the code are shown below. First, some variables are created: y.oloop and fit.oloop to avoid

overwriting the objects y and fit; moall, the object that will store information about the outliers;

maxit.oloop maximum number of allowed iterations and the counter iter.

y.oloop <- y

fit.oloop <- fit

moall <- NULL

maxit.oloop <- 4

iter <- 0

while (iter < maxit.oloop)

{

pars <- coefs2poly(fit)

resid.oloop <- residuals(fit.oloop)

resid.med <- quantile(resid.oloop, probs = 0.5)

sigma <- 1.483 * quantile(abs(resid.oloop - resid.med), probs = 0.5)

mo.iloop <- locate.outliers.iloop(resid.oloop, pars, cval,

types = c("IO", "AO", "LS", "TC"), maxit = maxit.iloop)

if (nrow(mo.iloop) == 0)

12

break

moall <- rbind(moall, mo.iloop)

oeff <- outliers.effects(mo.iloop, n, weights = TRUE, pars = pars)

y.oloop <- y.oloop - rowSums(oeff)

fit.oloop <- arima(y.oloop, order = fit$arma[c(1,6,2)],

seasonal = list(order = fit$arma[c(3,7,4)]))

iter <- iter + 1

}

print(moall)

type ind coefhat tstat

4 AO 15 -4.450352 -4.797319

5 AO 45 5.118357 5.517405

8 LS 80 3.452909 4.980832

cat(sprintf("number of iterations: %s\n", iter))

number of iterations: 1

At each iteration, the required information is extracted from the last fitted model (parameter

estimates, residuals and MAD of residuals). The inner loop is run to identify outliers and then

the model is fitted again for the series adjusted for the outliers identified at the current iteration.

The function outliers.effects creates a matrix of outliers effects as shown in Figure 1; weights

is set to TRUE in order to weight each outlier by the estimated coefficient instead of using a unit

impulse. The loop stops when no more outliers are detected by the inner loop or when the maximum

number of allowed iterations is reached. The final set of outliers is printed. We can see that it is

in agreement with the relatively prominent shocks added to the simulated series.

For completeness, we show how a call to the function locate.outliers.oloop would be defined

to run the inner and outer loops and obtain the results shown above.

stage1 <- locate.outliers.oloop(y, fit, types = c("IO", "AO", "LS", "TC"),

cval = cval, maxit.iloop = maxit.iloop)

stage1$outliers

type ind coefhat tstat

4 AO 15 -4.450352 -4.797319

5 AO 45 5.118357 5.517405

8 LS 80 3.452909 4.980832

5.2 Stage II: remove outliers

Although the detection of outliers is already made in stage I, we must be aware that the initial

selection of the ARIMA model may be affected by the presence of outliers (especially the order of

integration) and vice versa, that is, the detection of outliers may be affected by the choice of the

model and the parameter estimates based on the observed series.

To avoid finding spurious outliers caused by an improper choice or estimation of a model, the

13

equation (3) is fitted for the observed series including the outlier regressors identified in stage I.

If any of the outliers turn to be non-significant then they are removed from the set of potential

outliers. The function discard.outliers performs this operation as follows.

moall <- stage1$outliers

xreg <- outliers.effects(moall, n, weights = FALSE, pars = pars)

iter <- 0

while (TRUE)

{

fit <- forecast::auto.arima(x = y, xreg = xreg, allowdrift = FALSE, ic = "bic")

xregcoefs <- coef(fit)

ind <- match(colnames(xreg), names(xregcoefs))

xregcoefs <- xregcoefs[ind]

tstats <- xregcoefs / sqrt(diag(fit$var.coef)[ind])

ref <- which(abs(tstats) < cval)

if (length(ref) > 0)

{

moall <- moall[-ref,]

xreg <- data.matrix(xreg[,-ref])

} else

break

if (nrow(moall) == 0)

break

iter <- iter + 1

}

The data.frame moall contains information about the set of outliers detected in stage I. The

function outliers.effects builds the regressors and stores them in the object xreg. Notice that

here the regressors are not the variables xk used in stage I but a variable capturing the exogenous

effect according to each type of outlier as was defined in equation (2) and depicted in Figure 1.

An ARIMA model is selected again for the observed data by means of forecast::auto.arima

including the object xreg as regressor variables. Then the t-statistics are computed and stored in

tstats. If any of them is below the threshold (in absolute value) then the corresponding outlier

is removed from moall. The process is iterated until all the outliers are significant in the last

model selected for the data. This process to discard outliers corresponds to the option method =

"en-masse" in function discard.outliers. Alternatively, the significance of the outliers can be

tested in a botton-up procedure (see the documentation of the function).

A summary output for this stage is printed below.

print(fit)

Series:

Regression with ARIMA(1,0,0) errors

14

Coefficients:

ar1 AO15 AO45 LS80

0.3023 -4.6067 5.4875 4.6667

s.e. 0.0909 0.8736 0.8689 0.1986

sigma^2 estimated as 0.8356: log likelihood=-157.51

AIC=325.02 AICc=325.55 BIC=338.96

moall[,"coefhat"] <- xregcoefs

moall[,"tstat"] <- tstats

print(moall)

type ind coefhat tstat

4 AO 15 -4.606657 -5.273256

5 AO 45 5.487542 6.315486

8 LS 80 4.666688 23.492144

Despite no outliers were removed, a different model is now selected. Although we did not print it,

the model chosen at the beginning of stage I in the previous subsection was an ARIMA(0, 1, 1), now

an ARIMA(1, 0, 0) is chosen. When the level shift is not considered, the data cannot be modelled

by a stationary ARMA model. Despite there is a deterministic level shift a stochastic trend is

considered and the first order differencing filter is applied. After detecting and including the effect

of the level shift, its effect is estimated and a stationary ARMA model is chosen by the automatic

model selection procedure.

5.3 Stage III: iterate stages I and II for the adjusted series

Here, the stages I and II are iterated for the adjusted series. If new outliers are found they are

added to the set of outliers found in the previous iteration.

The original series can be adjusted for outliers defined in moall as follows. The function

outliers.effects builds the outlier variables according to each type. The total outliers effect

is measured and stored in oeff. The series adjusted for outliers is stored in yadj (the linearized

series).

tmp <- coefs2poly(fit)

xreg <- outliers.effects(moall, n, weights = FALSE, pars = tmp)

xregcoefs <- coef(fit)

ind <- match(colnames(xreg), names(xregcoefs))

xregcoefs <- xregcoefs[ind]

oeff <- xreg %*% cbind(xregcoefs)

yadj <- y - oeff

plot(y, col = "gray80")

lines(yadj)

After choosing a model for the adjusted series and calling directly the function locate.outliers,

15

we see that no additional outliers are detected and thus the procedure is finished. Figure 2 shows

the original data (gray line), the adjusted series (black line), the location of the detected outliers

(red points) and their estimated effects (red line).

fit <- forecast::auto.arima(x = yadj, allowdrift = FALSE, ic = "bic")

tmp <- coefs2poly(fit)

resid <- residuals(fit)

sigma <- 1.483 * quantile(abs(resid - quantile(resid, probs = 0.5)), probs = 0.5)

locate.outliers(resid, pars, cval, types = c("IO", "AO", "LS", "TC"))

[1] type ind coefhat tstat

<0 rows> (or 0-length row.names)

res <- tso(y, cval = cval, types = c("IO", "AO", "LS", "TC"),

maxit = 1, maxit.iloop = 4)

postscript(file = file.path("figures", "fig-yadj.eps"), horizontal = FALSE,

family = "Times", paper = "special", width = 4.3, height = 2.6)

par(mar = c(1.7, 1.5, 1, 1.1), las = 1)

#plot(res, args.plot = list(main = NULL), offset = -2.6)

tmp0 <- tmp <- cbind(resfitx, res$yadj)

mintmp <- min(tmp)

sdtmp <- sd(tmp)

tmp[,1] <- tmp[,1] / sdtmp

tmp[,2] <- tmp[,2] / sdtmp

xeffects <- res$effects / sdtmp

plot(tmp, plot.type = "single", type = "n", xaxt = "n", yaxt = "n",

ylim = c(mintmp - abs(min(xeffects)) - 0.0 * sdtmp, max(tmp)))

lines(tmp[,1], col = "gray80")

lines(tmp[,2])

lines(xeffects - abs(mintmp) - 0.0 * sdtmp, col = "red", type = "s")

points(x = res$times, y = tmp[,1][res$outliers[,"ind"]],

col = "gray80", bg = "red", pch = 21, cex = 0.8)

#ax <- pretty(time(tmp[,1]))

ax <- c(1, seq.int(20, 120 , 20))

axis(side = 1, at = ax, labels = FALSE, tcl = -0.25, lwd = 0, lwd.tick = 1)

axis(side = 1, at = ax, labels = ax, lwd = 0, lwd.tick = 0, line = -0.9, cex.axis = 0.7)

axis(side = 1, at = ax[-1] - (ax[3] - ax[2])/2, labels = FALSE, tcl = -0.15, lwd = 0, lwd.tick = 1)

aylabels <- pretty(tmp0[,1])

ay <- round(aylabels / sdtmp)

axis(side = 2, at = ay, labels = FALSE, tcl = -0.25, lwd = 0, lwd.tick = 1)

axis(side = 2, at = ay, labels = aylabels, lwd = 0, lwd.tick = 0, line = -0.6, cex.axis = 0.7)

axis(side = 2, at = ay-(ay[2] - ay[1])/2, labels = FALSE, tcl = -0.15, lwd = 0, lwd.tick = 1)

aylabels <- pretty(res$effects)

ay <- round(aylabels / sdtmp) - abs(mintmp) - 0.0 * sdtmp

axis(side = 4, at = ay, labels = FALSE, tcl = -0.25, lwd = 0, lwd.tick = 1)

axis(side = 4, at = ay, labels = aylabels, lwd = 0, lwd.tick = 0, line = -0.6, cex.axis = 0.7)

axis(side = 4, at = ay-(ay[2] - ay[1])/2, labels = FALSE, tcl = -0.15, lwd = 0, lwd.tick = 1)

invisible(dev.off())

16

In most cases, the user will be interested in running the procedure in one call rather than by

stages as we did here for illustration. That’s precisely the point of an automatic procedure. The

function tso0 runs stages I and II and the function tsoutliers iterates the procedure running tso0

first for the original series and then for the adjusted series. These functions are relatively flexible

and allows the user to control several parameters of the procedure such as the maximum number

of iterations in the loops, the threshold and the arguments passed to forecast::auto.arima to

select the ARIMA model, among other parameters.

Figure 2: Original series, adjusted series and estimated outlier effects

1 20 40 60 80 100 120

−4

−2

0

2

4

6

−4

−2

0

2

4

6

5.4 Polishing rules

In practice, we may encounter some series for which the procedure as described above would not

return a reliable result. If the initial model and parameter estimates do not fit well the overall

dynamics of the data, the procedure may find too many outliers or the estimate of the outlier

effects may not be accurate enough. In this case, the correction for outliers may induce some

artificial effects in the adjusted series that may in turn be identified as outliers in the next run

of the procedure. Next, we discuss some polishing rules that are included in the code of package

tsoutliers. Some of them have already been mentioned above.

• By default, the threshold against which the t-statistics are compared is determined based on

the sample size, n. cval = 3 if n ≤ 50; cval = 4 if n ≥ 450; cval = 3 + 0.0025 × (n − 50)

otherwise.

• In the adjusted series, which is expected to be cleaner from outlying observations, the thresh-

old or critical value, cval, can be reduced by a factor cval.reduce so that the threshold

17

cval× (1− PC) is used.

• In a previous version of the package this rule was applied: The outliers AO, LS, and TC have

precedence over IO when the t-statistic related to more than one type of outlier exceed the

threshold cval at a given time point, i.e., the IO is ignored and the other type of outlier is

kept. In the current version this rule is not applied but the IO type of outlier is not considered

by default.

• If at a given iteration of the inner or outer loop an outlier is found at a time point where an

outlier was already detected in a previous iteration, then the type of outlier that was first

detected is kept.

• If the t-statistics related to a given type of outlier are beyond the critical value for consecutive

time points, only the point with the highest t-statistic is kept.

• The inner and outer loops of stage I are stopped if a predefined maximum number of iterations

is reached. This does not seem necessary for the outer loop but a limit is set for safety.

• When regular or seasonal differences are taken, the residuals related to the first observations

may be overly erratic. If the maximum value of the first residuals are beyond a threshold then

they are set to zero in function locate.outliers.oloop. In this case, the first observations

are not checked for the presence of outliers. The number of observations that may be omitted

is d + D × s, where d is the number of regular differences, D is the number of seasonal

differences and s is the periodicity of the data. The threshold is defined as 3.5 times the

standard deviation of the remaining residuals.

5.5 Adaptation of the procedure to structural time series models

The procedure to detect outliers can be adapted to the framework of the basic structural model

introduced in § 3.2.

The t-statistics related to IO are computed as in the ARIMA model since the regressor is a unit

impulse variable.

tauIO.stsm <- resid / sigma

The object resid is the residuals from structural model and sigma is the MAD of the residuals

that was defined before.

The statistics for AO are computed similarly as in the ARIMA model. Here, the Kalman

filter is run taking as input the indicator variable I(1). To avoid the problems inherent to the

18

initialization of the Kalman filter, n.start additional zeros are included in the indicator variable.

They act as warming observations and are removed afterwards from the final vector of coefficients

f. The computations for the remaining time points take advantage of the fact that the regressors

are shifted versions of the regressor obtained for I(1), as we did in the ARIMA case.

n.start <- 50

I <- ts(rep(0, length(resid) + n.start - 1),

start = start(resid), frequency = frequency(resid))

I[n.start] <- 1

tmp <- KFKSDS::KF(I, ss)

f <- tmp$v[-seq.int(n.start-1)]

ao.xy <- as.vector(na.omit(

filter(x = c(resid, rep(0, n-1)), filter = rev(f), method = "conv", sides = 1)))

ao.xx <- rev(cumsum(f^2))

tauAO.stsm <- ao.xy / (sigma * sqrt(ao.xx))

The object ss is a list containing the matrices of the state space representation of the structural

model. If the package stsm [9] was used to fit the model, the function stsm.class::char2numeric

can be used to easily define this object.

The statistics for the LS reuse the values obtained above and stored in ao.xy. The inverse of

the difference filter is applied on it and then the statistics are computed as usual.

ls.xy <- rev(diffinv(rev(ao.xy))[-1])

ls.xx <- rev(cumsum(diffinv(f)[-1]^2))

tauLS.stsm <- ls.xy / (sigma * sqrt(ls.xx))

The operations for the TC are the same as for LS except that instead of the inverse of the differencing

filter (1− L), the inverse of (1− δL) is applied.

tc.xy <- rev(filter(x = rev(ao.xy), filter = delta, method = "rec"))

dinvf <- filter(x = f, filter = delta, method = "rec")

tc.xx <- rev(cumsum(dinvf^2))

tauTC.stsm <- tc.xy / (sigma * sqrt(tc.xx))

Given the t-statistics, the automatic detection procedure can be applied as described in the

previous section, except that the structural model is fitted instead of an ARIMA model. Notice

also that since the components of the structural model are defined beforehand, there is no need no

reassess the choice of the model but only to refit the parameters of the model.

6 Simulation exercises

The results have changed with respect to version 0.6-4, the main reason is apparently this change in

R 3.2.1: with arima(*, xreg = .) (for d >= 1), the number of effective observations used to

19

compute the standard errors of parameter estimates has been modified as reported in PR#16278.

[Table 1 about here.]

[Table 2 about here.]

7 Applications to real data

7.1 Two popular time series

Time series methods described in the literature are often applied to two popular time series: 1)

the Nile time series, measurements of the annual flow of the river Nile at Ashwan in the period

1871-1970 and 2) the classic Box & Jenkins airline data, monthly totals of international airline

passengers in the period 1949 to 1960. These data are available in the datasets package that

comes with the base R system.

The Nile time series is a common example of the the local level model, the simplest structural

time series model. Next, we run tso for the local level model. As of version 0.6-7 the experimental

version for structural time series model is not available. Check previous versions of the package

or contact the maintainer for details. For illustration, these are the results that were obtained in

previous versions for the local level model.

resNile1 <- tso(y = Nile, types = c("AO", "LS", "TC"),

tsmethod = "stsm", args.tsmodel = list(model = "local-level"))

resNile1fitcall$xreg<-NULL

resNile1

Call:

structure(list(method = "L-BFGS-B"), .Names = "method")

Parameter estimates:

LS29 var1 var2

Estimate -247.78 16136 0

Std. error 11.71 1163 NaN

Log-likelihood: -633.0286

Convergence: 0

20

Number of iterations: 46 46

Variance-covariance matrix: optimHessian

Outliers:

type ind time coefhat tstat

1 LS 29 1899 -247.8 -21.16

Warning messages:

1: In sqrt(diag(solve(res$hessian))) : NaNs produced

2: In sqrt(diag(solve(res$hessian))) : NaNs produced

3: In sqrt(diag(solve(res$hessian))) : NaNs produced

4: In sqrt(diag(solve(res$hessian))) : NaNs produced

5: In sqrt(diag(solve(res$hessian))) : NaNs produced

We can see that a level shift is detected as observation 29 (year 1899). More importantly, the

variance of the level component is estimated to be zero when this level shift is included in the

model. Thus, as it has been suggested by others, the Nile time series is well described by a level

shift plus a white noise disturbance. No other structure seems to be present in the data. Similar

conclusions are found in the ARIMA framework:

resNile2 <- tso(y = Nile, types = c("AO", "LS", "TC"),

maxit = 1, discard.method = "bottom-up", tsmethod = "auto.arima",

args.tsmethod = list(allowdrift = FALSE, ic = "bic"))

resNile2

Series: Nile

Regression with ARIMA(0,0,0) errors

Coefficients:

intercept LS29 AO43

1097.7500 -242.2289 -399.5211

s.e. 22.6783 26.7793 120.8446

sigma^2 estimated as 14846: log likelihood=-620.65

AIC=1249.29 AICc=1249.71 BIC=1259.71

Outliers:

type ind time coefhat tstat

1 LS 29 1899 -242.2 -9.045

2 AO 43 1913 -399.5 -3.306

A strong level shift is detected at observation 29 (year 1899), which is also suggested by the graphical

representation of the series (not shown here). Curiously enough, the model selection procedure did

not find any ARIMA structure when the level shift is detected and included in the model.

21

The model ARIMA(0,1,1)(0,1,1) has been found to fit well to many economic time series. This

model is often called the airlines model since its application to the airlines passengers data is a

popular example of the Box & Jenkins methodology. The outliers detection procedure can be run

specifying beforehand the use of this or any other ARIMA model instead of running the model

selection procedure. To do so, we set tsmethod = "arima" to indicate that an ARIMA model will

be used. The ARIMA model is defined in the argument args.tsmethod, which is a list that may

contain any of the arguments accepted by the familiar function stats::arima.

resAirP <- tso(y = log(AirPassengers), types = c("AO", "LS", "TC"),

maxit = 1, discard.method = "bottom-up", tsmethod = "arima",

args.tsmethod = list(order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1))))

resAirP

Call:

structure(list(method = NULL), .Names = "method")

Coefficients:

ma1 sma1 AO29 LS39 LS54 AO62 AO135

-0.3192 -0.4410 0.0966 -0.0800 -0.0977 -0.0738 -0.1038

s.e. 0.0858 0.0873 0.0206 0.0242 0.0236 0.0204 0.0238

sigma^2 estimated as 0.0008581: log likelihood = 275.25, aic = -534.49

Outliers:

type ind time coefhat tstat

1 AO 29 1951:05 0.09657 4.698

2 LS 39 1952:03 -0.07999 -3.304

3 LS 54 1953:06 -0.09774 -4.134

4 AO 62 1954:02 -0.07380 -3.611

5 AO 135 1960:03 -0.10380 -4.359

7.2 Consumer price indices

Table 3 reports the ARIMA model chosen by TRAMO both when the presence of potential outliers

is considered and when it is omitted. The value of the Jarque-Bera test for normality [7] is also

reported. Rejection of the null hypothesis of normality of residuals at the 5% significance level is

indicated with an asterisk (the reference critical value is χ2
2,0.05 = 5.99).

[Table 3 about here.]

Including outlier regressors may lead to different ARIMA models and may especially affect the

order of integration necessary to render stationary residuals. However, in these series we do not

observe changes in the order of integration of the regular and seasonal part of the model. As regards

22

the normality of residuals, we observe a significant change when outliers are taken into account.

When outliers are omitted the null of normality of residuals is rejected in all cases except in the

series ‘011300’. When the series is checked for the presence of outliers normality of residuals is

achieved in 8 out of the 11 series where the null was rejected.

The same exercise is conducted in R. The automatic procedures for the selection of the ARIMA

model and the detection of outliers implemented respectively in the packages forecast and tsoutliers

are employed. The function forecast::auto.arima is run with the options allowdrift = FALSE

and ic = "bic", i.e., a drift is not included and the Bayesian information criterion is used; the

arguments maxit = 1 (the process is applied once on the original series) and discard.method =

"bottom-up" are used in tso. Results are reported in Tables 4 and 5. It is observed that including

outliers increases the number of cases where normality is achieved, although in fewer cases compare

to TRAMO. It seems that TRAMO tends to favour the choice of a seasonal differencing filter compared

to forecast. Although not reported, when model selection is not performed and the model chosen

by TRAMO is passed to the function tsouliers, normality is achieved in the same cases as those

reported for TRAMO in Table 3.

[Table 4 about here.]

[Table 5 about here.]

The outliers detected by each implementation are reported in Table 6.

[Table 6 about here.]

7.3 Industrial production indices

We may be interested in including other external regressors in the model. For example, calendar

effects are often relevant when analysing industrial production indices. Regressors other than

outliers can be specified by means of the argument xreg. These regressors are included in the

process of detection of outliers.

Calendar effects (by default trading day and Easter) can be defined by means of the function

calendar.effects. See the documentation of this function for details.

Below, we show some of the options available in tsoutliers. We apply the procedure on the

Italian industrial production index, gipi. This series is used by [8] to illustrate the relevance of

seasonal level shifts. We work with the logarithms of the data, although in the reference paper it

23

is not clear whether they use logarithms or levels. We specify the ARIMA(0,1,1)(0,1,1) model (the

model chosen in the reference paper) and set the same critical value used in the reference paper,

cval = 3.5.

data("bde9915")

gipi <- log(bde9915$gipi)

ce <- calendar.effects(gipi)

resGIPI1 <- tso(y = gipi, xreg = ce, cval = 3.5,

types = c("AO", "LS", "TC", "SLS"), maxit = 1, discard.method = "bottom-up",

tsmethod = "arima", args.tsmethod = list(order = c(0, 1, 1),

seasonal = list(order = c(0, 1, 1))))

resGIPI1

Call:

structure(list(method = NULL), .Names = "method")

Coefficients:

ma1 sma1 trading-day Easter SLS28 AO44 SLS49 SLS92 SLS164

-0.5756 -0.9265 0.0085 -0.0273 -0.062 0.1068 -0.0606 0.0594 0.0704

s.e. 0.0581 0.1132 0.0005 0.0077 0.015 0.0205 0.0117 0.0114 0.0136

sigma^2 estimated as 0.0004802: log likelihood = 418.52, aic = -817.05

Outliers:

type ind time coefhat tstat

1 SLS 28 1983:04 -0.06198 -4.128

2 AO 44 1984:08 0.10679 5.215

3 SLS 49 1985:01 -0.06062 -5.186

4 SLS 92 1988:08 0.05945 5.217

5 SLS 164 1994:08 0.07043 5.187

We see that calendar effects are significant and several SLS are found. The outliers detected in

the reference paper are AO 1984:08, AO 1987:01, SLS 1994:08 and SLS 1988:08. Two more SLS

and one less AO are found with the options chosen above. It must noticed that here we specified

the airlines model beforehand while in the reference paper a model selection procedure is used.

Hence, despite the airlines model is eventually chosen, different models may have been used in the

procedure.

Running the procedure along with model selection the ARIMA(1,0,1)(2,1,1) is chosen and a

SLS at 1985 : 01 is found.

resGIPI2 <- tso(y = gipi, xreg = ce, types = c("AO", "LS", "TC", "SLS"),

maxit = 1, discard.method = "bottom-up", tsmethod = "auto.arima",

args.tsmethod = list(allowdrift = FALSE, ic = "bic"))

resGIPI2

Series: gipi

Regression with ARIMA(0,1,1) errors

24

Coefficients:

ma1 trading-day Easter SLS176

-0.9503 0.0091 -0.0720 -0.6584

s.e. 0.0177 0.0061 0.0868 0.1625

sigma^2 estimated as 0.05275: log likelihood=10.82

AIC=-11.64 AICc=-11.32 BIC=4.62

Outliers:

type ind time coefhat tstat

1 SLS 176 1995:08 -0.6584 -4.05

Using discard.method = "en-masse", the model ARIMA(0,1,1)(0,0,2) was chosen and the a SLS

at 1988 : 08 is found. Changing the method to discard outliers leads also to a different set of

outliers with the ARIMA(0,1,1)(0,1,1) model.

resGIPI3 <- tso(y = gipi, xreg = ce, cval = 3.5,

types = c("AO", "LS", "TC", "SLS"), maxit = 1, discard.method = "en-masse",

tsmethod = "arima", args.tsmethod = list(order = c(0, 1, 1),

seasonal = list(order = c(0, 1, 1))))

resGIPI3

Call:

structure(list(method = NULL), .Names = "method")

Coefficients:

ma1 sma1 trading-day Easter AO44 SLS49 AO176

-0.5972 -0.6995 0.0089 -0.0200 0.0898 -0.0638 0.0963

s.e. 0.0578 0.0673 0.0005 0.0082 0.0216 0.0171 0.0227

sigma^2 estimated as 0.00065: log likelihood = 398.56, aic = -781.12

Outliers:

type ind time coefhat tstat

1 AO 44 1984:08 0.08984 4.164

2 SLS 49 1985:01 -0.06376 -3.730

3 AO 176 1995:08 0.09631 4.237

In the next example the number of seasonal differences is fixed to one, D = 1. Despite the same

model as in resGIPI2 shown above is chosen and the same method to remove outliers is used, here

two additional SLS are found. The reason for that is that although the final model is the same in

both cases, different models may probably have been considered during the process, in particular

a different order of integration may have been used, leading to a different set of outliers obtained

at each step.

resGIPI4 <- tso(y = gipi, xreg = ce, types = c("AO", "LS", "TC", "SLS"),

maxit = 1, discard.method = "bottom-up", tsmethod = "auto.arima",

25

args.tsmethod = list(allowdrift = FALSE, D = 1, ic = "bic"))

resGIPI4

Series: gipi

Regression with ARIMA(2,0,2)(2,1,1)[12] errors

Coefficients:

ar1 ar2 ma1 ma2 sar1 sar2 sma1 trading-day Easter AO44

1.7927 -0.7966 -1.5437 0.6652 0.2107 -0.3535 -0.7553 8e-03 -0.0172 0.0857

s.e. 0.1071 0.1063 0.1042 0.0793 0.0973 0.0820 0.0707 6e-04 0.0066 0.0191

AO73 SLS92 SLS176

-0.0647 0.0627 0.0781

s.e. 0.0178 0.0132 0.0179

sigma^2 estimated as 0.0005299: log likelihood=422.62

AIC=-817.25 AICc=-814.7 BIC=-772.55

Outliers:

type ind time coefhat tstat

1 AO 44 1984:08 0.08565 4.489

2 AO 73 1987:01 -0.06466 -3.639

3 SLS 92 1988:08 0.06267 4.758

4 SLS 176 1995:08 0.07814 4.356

Using different options leads to differences in the results. An inspection of the residuals and a

further insight is required from the user in order to choose the model that best fit the data.

8 Conclusion

We have introduced the tsoutliers R package. The package implements an automatic procedure

for the detection of outliers in time series. The original procedure proposed in the literature relies

on the framework of ARIMA models. The package tsoutliers adapts the procedure to the context

of structural time series models. Currently this extension is an experimental version that requires

further development.

The functions available in the package tsoutliers allows the user to do a manual run of each

step of the procedure, i.e. not in automatic mode. Thus, the package is also useful to track

and inspect the behaviour of the procedure and come up with ideas for possible improvements or

enhancements.

The application of the gipi time series showed the flexibility of the tso interface to set and

choose different options that may be relevant in practice. Those examples suggested also that

pursuing a fully automatic procedure may become too cumbersome. Therefore, alternative manual

runs of the automatic procedure are advisable when possible.

26

References

[1] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis: Forecasting and Control.

San Francisco: Holden-Day, 1970.

[2] Peter J. Brockwell and Richard A. Davis. Introduction to Time Series and Forecasting. Springer

Texts in Statistics. Springer, 2002.

[3] Chung Chen and Lon-Mu Liu. Joint Estimation of Model Parameters and Outlier Effects in

Time Series. Journal of the American Statistical Association, 88(421):284–297, 1993.

[4] James Durbin and Siem Jan Koopman. Time Series Analysis by State Space Methods. Oxford

Statistical Science Series. Oxford University Press, 2001.

[5] Andrew C. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cam-

bridge University Press, 1989.

[6] Rob J. Hyndman and Yeasmin Khandakar. Automatic Time Series Forecasting: The forecast

Package for R. Journal of Statistical Software, 27(3):1–22, 2008.

[7] Carlos M. Jarque and Anil K. Bera. Efficient Test for Normality, Homoscedasticity and Serial

Independence of Residuals. Economic Letters, 6(3):255–259, 1980.

[8] Regina Kaiser and Agust́ın Maravall. Measuring Business Cycles in Economic Time Series.

Springer Verlag, 2001.

[9] Javier López-de-Lacalle. stsm: Structural Time Series Models, 2016. R package version 1.9.

[10] D. S. G. Pollock. A Handbook of Time-Series Analysis Signal Processing and Dynamics.

Academic Press, 1999.

[11] Rob J Hyndman with contributions from George Athanasopoulos, Slava Razbash, Drew

Schmidt, Zhenyu Zhou, Yousaf Khan, Christoph Bergmeir, and Earo Wang. forecast: Fore-

casting Functions for Time Series and Linear Models, 2014. R package version 5.3.

27

Table 1: Type I error. Given the model of the data generating process. Version
November 2014

TRAMO tsoutliersa tsoutliersb

θs
c cvald IO AO LS TC AO LS TC SLS AO LS TC SLS

−0.1 2.80 0.40 0.40 0.36 0.37 0.46 0.50 0.46 0.48 0.38 0.42 0.39 0.37
−0.3 0.41 0.40 0.36 0.35 0.55 0.56 0.55 0.54 0.39 0.38 0.35 0.4
−0.6 0.33 0.39 0.36 0.35 0.56 0.60 0.55 0.55 0.35 0.41 0.35 0.38
−0.9 0.30 0.43 0.39 0.39 0.45 0.49 0.49 0.30 0.34 0.37 0.34 0.22
−0.1 3.17 0.15 0.14 0.13 0.13 0.15 0.19 0.16 0.13 0.14 0.17 0.15 0.14
−0.3 0.14 0.13 0.13 0.12 0.13 0.18 0.13 0.15 0.13 0.15 0.11 0.15
−0.6 0.12 0.14 0.14 0.12 0.15 0.21 0.15 0.14 0.13 0.17 0.12 0.15
−0.9 0.09 0.16 0.14 0.15 0.13 0.18 0.14 0.06 0.12 0.16 0.12 0.07
−0.1 3.50 0.06 0.06 0.05 0.05 0.04 0.06 0.05 0.04 0.04 0.06 0.05 0.04
−0.3 0.05 0.04 0.04 0.04 0.03 0.07 0.03 0.04 0.04 0.06 0.03 0.06
−0.6 0.05 0.04 0.05 0.04 0.04 0.07 0.04 0.04 0.04 0.06 0.04 0.05
−0.9 0.03 0.05 0.07 0.06 0.04 0.06 0.04 0.01 0.04 0.06 0.04 0.02
−0.1 4.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.00
−0.3 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02
−0.6 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00
−0.9 0.00 0.02 0.01 0.00 0.01 0.02 0.01 0.00 0.01 0.02 0.01 0.00

Cells report the percentage of cases where a type of outlier was found. Based on 1, 000 series
of length 120 generated from the Airlines model, ARIMA(0,1,1)(0,1,1), with no outliers. Model
identification is not performed; the Airlines model is used.

aRemove method in the second stage of the procedure is the ”en-masse” approach.
bRemove method in the second stage of the procedure is the ”bottom-up” approach.
cSeasonal moving average coefficient. The non-seasonal moving average coefficient is fixed to

−0.6.
dCritical value to determine the presence of outliers.

28

Table 2: Type I error. Given the model of the data generating process. Version
May 2017

TRAMO tsoutliersa tsoutliersb

θs
c cvald IO AO LS TC AO LS TC SLS AO LS TC SLS

−0.1 2.80 0.40 0.40 0.36 0.37
−0.3 0.41 0.40 0.36 0.35
−0.6 0.33 0.39 0.36 0.35
−0.9 0.30 0.43 0.39 0.39
−0.1 3.17 0.15 0.14 0.13 0.13 0.24 0.28 0.27 0.24 0.23 0.23 0.23 0.23
−0.3 0.14 0.13 0.13 0.12 0.24 0.27 0.22 0.27 0.23 0.22 0.19 0.25
−0.6 0.12 0.14 0.14 0.12 0.25 0.30 0.25 0.23 0.19 0.25 0.21 0.22
−0.9 0.09 0.16 0.14 0.15 0.22 0.25 0.23 0.11 0.20 0.22 0.19 0.12
−0.1 3.50 0.06 0.06 0.05 0.05 0.08 0.10 0.09 0.07 0.09 0.10 0.09 0.08
−0.3 0.05 0.04 0.04 0.04 0.07 0.12 0.07 0.09 0.08 0.10 0.07 0.10
−0.6 0.05 0.04 0.05 0.04 0.08 0.11 0.08 0.08 0.08 0.11 0.08 0.09
−0.9 0.03 0.05 0.07 0.06 0.08 0.10 0.08 0.03 0.07 0.09 0.07 0.03
−0.1 4.00 0.01 0.01 0.01 0.00 0.02 0.03 0.02 0.01 0.02 0.02 0.02 0.01
−0.3 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02
−0.6 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01
−0.9 0.00 0.02 0.01 0.00 0.02 0.03 0.01 0.00 0.02 0.03 0.01 0.01

Cells report the percentage of cases where a type of outlier was found. Based on 1, 000 series
of length 120 generated from the Airlines model, ARIMA(0,1,1)(0,1,1), with no outliers. Model
identification is not performed; the Airlines model is used.

aRemove method in the second stage of the procedure is the ”en-masse” approach.
bRemove method in the second stage of the procedure is the ”bottom-up” approach.
cSeasonal moving average coefficient. The non-seasonal moving average coefficient is fixed to

−0.6.
dCritical value to determine the presence of outliers.

Table 3: Test for normality of residuals in ARIMA models chosen by software TRAMO

Omitting outliers Including outliers
Series Model JB Model JB

foodpr (2, 1, 0)(1, 0, 1) 637.60 ∗ (1, 1, 1)(1, 0, 1) 33.99 ∗
igxe00 (0, 1, 2)(0, 1, 0) 354.30 ∗ (3, 1, 0)(0, 1, 1) 173.60 ∗
011600 (0, 1, 0)(0, 1, 1) 8.16 ∗ (3, 1, 1)(0, 1, 1) 0.39

011000 (1, 1, 1)(0, 1, 1) 10.65 ∗ (1, 1, 1)(0, 1, 1) 3.18

010000 (1, 1, 0)(1, 0, 0) 8.54 ∗ (2, 1, 0)(0, 1, 1) 3.35

011200 (1, 1, 0)(0, 1, 1) 28.12 ∗ (1, 1, 0)(0, 1, 1) 8.96 ∗
nrgy00 (0, 1, 1)(0, 0, 0) 19.09 ∗ (0, 1, 1)(0, 0, 0) 19.23 ∗
011700 (0, 1, 1)(0, 1, 1) 15.23 ∗ (0, 1, 0)(0, 1, 1) 0.67

foodun (0, 1, 1)(1, 0, 0) 8.29 ∗ (0, 1, 1)(0, 1, 1) 0.21

011300 (0, 1, 1)(0, 1, 1) 0.05 (0, 1, 0)(0, 1, 1) 2.58

000000 (0, 1, 1)(0, 1, 1) 10.54 ∗ (0, 1, 1)(0, 1, 1) 1.76

serv00 (1, 1, 0)(0, 1, 1) 290.10 ∗ (3, 1, 1)(0, 1, 1) 2.66

29

Table 4: Test for normality of residuals in ARIMA models chosen in R. Model selection is done
according to BIC. Version December 2016; forecast 7.3 tsoutliers 0.6-5

Omitting outliersa Including outliersb

Series Model JB Model JB

000000 (0, 1, 1)(2, 1, 0) 10.27 ∗ (0, 1, 0)(1, 0, 0) 3.44

010000 (1, 1, 0)(2, 0, 0) + drift 9.49 ∗ (2, 1, 0)(2, 0, 0) 0.30

011000 (2, 1, 0)(2, 0, 0) 32.64 ∗ (2, 1, 0)(2, 0, 0) 2.05

011200 (1, 1, 0)(1, 0, 0) + drift 35.69 ∗ (1, 1, 0)(1, 0, 0) + drift 3.38

011300 (0, 1, 0)(2, 0, 0) + drift 1.41 (0, 1, 0)(1, 0, 0) 1.01

011600 (1, 1, 0)(1, 0, 0) 31.22 ∗ (2, 1, 2)(1, 0, 0) 21.21 ∗
011700 (1, 1, 0)(2, 0, 0) 74.84 ∗ c

foodpr (2, 1, 0)(0, 0, 1) + drift 558.47 ∗ (1, 1, 1)(1, 0, 0) + drift 129.42 ∗
foodun (1, 1, 0)(2, 0, 0) 12.72 ∗ (1, 1, 0)(2, 0, 0) 0.04

igxe00 (0, 1, 0)(0, 1, 2) 802.06 ∗ (0, 1, 0)(2, 1, 0) 65.83 ∗
nrgy00 (1, 1, 0)(1, 0, 0) + drift 20.39 ∗ (1, 1, 0)(1, 0, 0) + drift 20.39 ∗
serv00 (1, 1, 2)(2, 1, 0) 359.06 ∗ (2, 0, 2)(2, 1, 0) + drift 142.78 ∗

aModel selection is carried out by means of the function forecast::auto.arima with the Bayesian information
criterion (BIC).

bOutliers are detected by means of the function tsoutliers::tso; model selection is carried out as in the column
‘omitting outliers’.

cThe default options failed when outliers were considered.

Table 5: Test for normality of residuals in ARIMA models chosen in R. Model selection is done
according to AICc. Version December 2016; forecast 7.3 tsoutliers 0.6-5

Omitting outliersa Including outliersb

Series Model JB Model JB

000000 (2, 1, 2)(2, 1, 0) 11.78 ∗ (1, 1, 0)(1, 0, 0) + drift 9.66 ∗
010000 (2, 1, 0)(2, 0, 0) + drift 11.40 ∗ (2, 1, 0)(2, 0, 0) 0.30

011000 (2, 1, 0)(2, 0, 0) + drift 32.73 ∗ (2, 1, 0)(2, 0, 0) + drift 2.35

011200 (1, 1, 0)(1, 0, 0) + drift 35.69 ∗ (1, 1, 0)(2, 0, 0) + drift 2.00

011300 (1, 1, 0)(2, 0, 0) + drift 1.63 (4, 1, 0)(1, 0, 0) + drift 0.92

011600 (1, 1, 0)(1, 0, 0) 31.22 ∗ (3, 1, 2)(1, 0, 0) 9.13 ∗
011700 (1, 1, 2)(2, 0, 0) 107.04 ∗ (1, 1, 1)(2, 0, 0) 1.49

foodpr (2, 1, 1)(0, 0, 2) + drift 615.43 ∗ (2, 1, 0)(2, 0, 0) + drift 77.90 ∗
foodun (1, 1, 0)(2, 0, 0) 12.72 ∗ (2, 1, 0)(2, 0, 0) 0.07

igxe00 (0, 1, 0)(0, 1, 2) 802.06 ∗ (0, 1, 0)(0, 1, 2) 242.30 ∗
nrgy00 (1, 1, 0)(2, 0, 0) + drift 20.47 ∗ (1, 1, 0)(2, 0, 0) + drift 20.57 ∗
serv00 (1, 1, 2)(2, 1, 0) 359.06 ∗ (2, 0, 2)(2, 1, 0) + drift 142.78 ∗

aModel selection is carried out by means of the function forecast::auto.arima with the Aikaike information
criterion modified for small samples (AICc).

bOutliers are detected by means of the function tsoutliers::tso; model selection is carried out as in the column
‘omitting outliers’.

30

Table 6: Outliers detected in the HICP data set

TRAMOa tsoutliersb tsoutliersc tsoutliersd

Series Outliers Outliers

000000 TC19 LS215 LS231
AO235

TC19 TC133 LS215
LS231

TC19 LS215 TC19 LS215 LS231
AO235

010000 AO23 TC85 TC145 AO23 TC145 AO23 TC145 AO23 TC145
011000 TC85 TC25 TC85 TC25 TC85 TC85
011200 AO28 LS29 LS29 AO28
011300 AO120 TC157 TC162

LS171
AO120 TC157 TC162
LS171

TC157 TC162 LS171 AO120 TC157 TC162
LS171

011600 AO79 LS85 AO138
TC163 AO210 LS225

TC17 AO79 AO150
AO210

TC17 AO79 AO150
AO210 LS225

AO79 TC163 AO210
LS225

011700 AO25 TC85 TC105 AO25 LS77 TC85 TC105 AO25 TC85 TC105
foodpr AO145 LS157 LS171

LS180 TC189 TC202
LS214

TC2 TC145 AO156
TC168 LS171 LS180
TC189

TC2 LS37 TC145 AO156
AO167 LS171 LS180
TC202 LS214

AO145 LS157 LS171
TC180 TC189 TC202
LS214

foodun TC145 AO23 TC145 AO23 TC145 TC145
igxe00 AO134 TC145 TC259 AO134 AO254 TC259

LS261
AO134 LS261 AO134 LS145 TC259

nrgy00 TC129 None TC129 TC129
serv00 TC7 AO16 TC132 LS144

AO219 AO280
TC7 AO280 TC7 AO280 TC19 TC132 AO219

AO280

aContinuation of results reported in the fourth and fifth columns in Table 3.
bContinuation of results reported in the fourth and fifth columns in Table 4.
cContinuation of results reported in the fourth and fifth columns in Table 5.
dOutliers detected by tsoutliers:tso given the ARIMA models selected by TRAMO.

31

32

	News
	Introduction
	Time series models
	ARIMA time series models
	Automatic ARIMA model selection

	Structural time series models

	Types of outliers
	Automatic detection procedure
	Stage I: locate outliers
	Stage II: remove outliers
	Stage III: iterate
	Polishing rules
	Adaptation to structural models

	Simulation exercises
	Applications to real data
	Two popular time series
	Consumer price indices
	Industrial production indices

	Conclusion

