
ARIMA-Model-Based Decomposition of Time Series.

The tsdecomp R Package

Javier López-de-Lacalle

https://jalobe.com

DRAFT VERSION: January 28, 2017

PACKAGE VERSION: 0.3 (devel)

Abstract

Given an autoregressive integrated moving average (ARIMA) model fitted to an observed

time series, the tsdecomp R package extracts a signal for the trend and seasonal components.

The package is mainly intended for annual, quarterly and monthly time series.

Key words: ARIMA, R, seasonal adjustment, signal extraction, time series.

1 Introduction

This document introduces the tsdecomp package of R (R Development Core Team, 2016), which

implements the methodology developed and described, among others, in Box et al. (1978), Burman

(1980), Hillmer and Tiao (1982) and Maravall and Pierce (1987). An extensive review of the

methodology is given in Planas (1997) and Gómez and Maravall (2001b).

The procedure relies on the decomposition of the pseudo-spectrum of an ARIMA model fitted

to an observed time series. The methodology has long been studied in the literature and is used

by many statistical offices for the compilation of seasonally adjusted data. The software TRAMO

and SEATS (Gómez and Maravall, 2001a) is the reference tool for the methodology described in the

references above. For the development of tsdecomp, the code of the SSMMATLAB package (Gómez,

2015) has been illuminating for the understanding of some points of the methodology.

The development of the package tsdecomp began as a pedagogical exercise. The current version

has become relatively mature and provides interfaces that can be used by users not necessarily

familiar with the methodology. The package has been tested and developed for annual, quarterly

and monthly time series.

The remaining of this document is organised as follows. Notation and some preliminary concepts

are given in Section 2 The methodology and implementation is introduced in Section 3. Some

examples are shown in Section 4.

1

https://jalobe.com


2 Notation and concepts

2.1 ARIMA process

An autoregressive moving-average process (ARMA), xt, can be defined as follows:

xt =

p∑
i=1

φixt−i +

q∑
i=0

θiεt−i , εt ∼ NID(0, σ2) ,

for t = 1, 2, . . . , T and θ0 is normalized to unity, θ0 = 1; p and q are respectively the orders of the

AR and MA parts of the model. The AR and MA structures can be conveniently represented as a

polynomial in the lag operator:

(1− φ1L− · · · − φpLp)xt = (1 + θ1L+ · · ·+ θqL
q)εt ,

φ(L)xt = θ(L)εt ,

where L is the lag operator such that Lixt = xt−i.

It is sometimes helpful to represent an ARMA process as a moving average of infinite order

(this requires the roots of φ(L) to lie outside the unit circle):

xt =
θ(L)

φ(L)
εt = ψ(L)εt =

∞∑
i=0

ψiεt−i . (1)

The coefficients ψi can be obtained by rewriting the above as ψ(L)φ(L) = θ(L). Then, multiplying

the polynomials in the left-hand-side (LHS) and equating the coefficients of the same powers Li in

both sides of the expression yields a system than can be solved recursively.

If the roots of φ(L) lie outside the unit circle (the inverse roots inside the unit circle), then

process is stationary, which roughly involves that the mean and variance remain constant over

time. The class of ARMA models can be extended to non-stationary data by means of ARIMA

models. This is the case when the data can be rendered stationary by taking differences to the

data (typically once or twice). We denote the regular differencing operator as (1− L) ≡ ∇.

We will also consider seasonal ARIMA models, which consist of a regular ARIMA structure

times another ARIMA structure of seasonal order. We will denote the polynomials related to the

seasonal part of the model in capital letters. For a series of period S (e.g., S = 4 in quarterly data), a

seasonal AR(2) process is represented by: Φ(L)xt = xt−Φ1xt−S−Φ1xt−2×S . Similarly, the seasonal

differencing operator is defined as (1−LS) ≡ ∇S . Thus, the general seasonal ARIMA(p,d,q)(P,D,Q)

model is given by:

φ(L)Φ(L)∇dxt∇DS xt = θ(L)Θ(L)εt .

2.2 Theoretical functions of an ARMA process

The autocovariance function (ACF) of an ARMA process is given by:

γτ = Cov(xt, xt−τ ) = E

[ ∞∑
i=0

ψiεt−i

∞∑
i=0

ψiεt−τ−i

]
= σ2

∞∑
i=0

ψiψi+τ . (2)

(The last part can be checked by making taking into account that εt are independently distributed

and, hence, E(εiεj) = 0 for i 6= j and E(εiεj) = σ2 if i = j.) As the above implies an infinite

2



sum, the following approach can be followed to compute it: multiply both sides of the equation

φ(L)xt = θ(L)εt by xt−k and take expectations; this will give a system of equations for the first

p+ 1 autocovariances; the remaining autocovariances can then be obtained recursively.

The autocovariance generating function (ACGF) is defined as a power series whose coef-

ficients are the autocovariances:

γ(L) =

∞∑
τ=−∞

γτL
τ .

Substituting the expression of γτ given in equation (2), the ACGF can be expressed as:

γ(L) = σ2
∞∑

τ=−∞

∞∑
i=0

ψiψi+τL
τ = σ2

∞∑
i=0

∞∑
j=0

ψiψjL
j−i

= σ2
∞∑
i=0

ψiL
−i
∞∑
i=0

ψiL
i = σ2ψ(L−1)ψ(L) .

By inspection of equation (1), it can be deduced that the ACGF can be expressed as:

γ(L) = σ2
θ(L)θ(L−1)

φ(L)φ(L−1)
. (3)

The ACGF is sometimes introduced as the z-transform of the autocovariance function:

γ(z) = γ0 + γ1(z + z−1) + γ2(z
2 + z−2) + · · · =

∞∑
τ=−∞

γτz
τ , (4)

γ(z) = σ2
θ(z)θ(z−1)

φ(z)φ(z−1)
= σ2ψ(z)ψ(z−1) ,

where z is a complex variable.

The spectral density is defined by:

f(ω) =
σ2

2π

θ(e−iω)θ(eiω)

φ(e−iω)φ(eiω)
=
σ2

2π

|θ(e−iω)|2

|φ(e−iω)|2
=
σ2

2π

|1 +
∑q

j=1 θje
−ijω|2

|1−
∑p

j=1 φje
−ijω|2

,

with ω ∈ [0, 2π].

Replacing z by e−iω in the expression of the ACGF given in equation (4) yields the spectral

density multiplied by 2π. In fact, the spectral density is the frequency domain representation of the

autocovariances. In particular, the spectral density is the Fourier transform of the autocovariance

function, and vice versa.

f(ω) =
1

2π

∞∑
τ=−∞

γτe
−iωτ . (5)

The decomposition pursued in the procedure relies on the partial fraction expansion of the

spectrum given in equation (4) with z = e−iω. Note that the variable in this equation is zj + z−j =

cos(ωj) + i sin(ωj) + cos(ωj) − i sin(ωj) = 2 cos(ωj) (for z = e−iw, which has unit modulus, the

inverse 1/z is the complex-conjugate of z). Thus, the expression given in equation (4) is not a

polynomial since the variable changes with the order of each element, j. As a consequence, the

standard techniques for partial fraction expansion cannot be applied. As we shall see, a change of

variable can be adopted so that the expression

A(2 cos(ωj)) = a0 + a12 cos(ω) + a22 cos(2ω) + · · ·+ an2 cos(nω)

3



can be transformed into the polynomial:

B(2 cos(ω)) = b0 + b12 cos(ω) + b2(2 cos(ω))2 + · · ·+ bn(2 cos(ω))n

= b0 + b1x+ b2x
2 + · · ·+ bnx

n , with x = 2 cos(ω) ,

to be decomposed in partial fractions.

2.3 Change of variable in the pseudo-spectrum

Upon the structure derived in Appendix A, the code below builds the matrix that gives the mapping

from the coefficients of the ACGF for the variable z = e−iω to a polynomial in the variable 2 cosω,

for a given order n. Note that each non-zero diagonal is the cumulative sum of the precedent

non-zero diagonal in absolute value, alternating negative and positive signs in each diagonal.

n <- 50

m <- diag(1, n, n)

n2 <- n - 2

j <- -1

tmp <- as.numeric(seq.int(2, n-1))

for (i in seq.int(3, n-2, 2))

{

id <- cbind(seq_len(n2), seq.int(i,n))

m[id] <- j * tmp

n2 <- n2 - 2

j <- -1 * j

tmp <- cumsum(tmp[seq_len(n2)])

}

if (n%%2 == 0) {

id <- cbind(seq_len(n2), seq.int(n-1,n))

m[id] <- j * tmp

} else

m[1,n] <- j * tmp

mat.acgf2poly <- m

mat.acgf2poly[1:10,1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0 -2 0 2 0 -2 0 2 0

[2,] 0 1 0 -3 0 5 0 -7 0 9

[3,] 0 0 1 0 -4 0 9 0 -16 0

[4,] 0 0 0 1 0 -5 0 14 0 -30

[5,] 0 0 0 0 1 0 -6 0 20 0

[6,] 0 0 0 0 0 1 0 -7 0 27

[7,] 0 0 0 0 0 0 1 0 -8 0

[8,] 0 0 0 0 0 0 0 1 0 -9

[9,] 0 0 0 0 0 0 0 0 1 0

[10,] 0 0 0 0 0 0 0 0 0 1

4



There are other alternatives to implement this change of variable. The appeal of this approach is

that we can create a matrix of a relatively large order, say 50, and store it as internal data in the

package, so that it does not need to be built each time it is required; also, the matrix product is a

relatively quick operation. In addition, the transformation can be undone easily by means of the

inverse of this matrix (we will use it below).

In order to understand the equivalence of equation (4) for the the variables z = e−iω and

x = 2 cosω, it may be helpful to fiddle around with the equations and concepts introduced above.

Let’s take the following ARMA(2,1) model:

xt − 0.8xt−1 + 0.6xt−2 = 0.4εt−1 + εt , withσ2ε = 1 .

It can be checked that complex-conjugate roots of this AR polynomial generates cycles of duration

around 6 periods. The spectral density has a peak at frequency ω = 1.028.

r <- polyroot(c(1,-0.8,0.6))

cbind(roots=r, w=Arg(r), period=2*pi/Arg(r))

roots w period

[1,] 0.666667+1.105542i 1.028157+0i 6.111113+0i

[2,] 0.666667-1.105542i -1.028157+0i -6.111113+0i

Below, the theoretical autocovariances of the ARMA model are computed and stored in gamma. For

simplicity, they are computed based on the ψi coefficients of the MA representation of the ARMA

process given in equation (1). The spectral density is then computed by replacing z = e−iω in

the ACGF defined in equation (4). Note that, for this z of unit modulus, zj + z−j = cos(ωj) +

i sin(ωj) + cos(ωj)− i sin(ωj) collapses to 2 cos(ωj). The result is rescaled by the factor 1/2π.

psi <- c(1, ARMAtoMA(ar=c(0.8,-0.6), ma=0.4, lag.max=49))

gamma <- c(sum(psi^2), rep(0, length(psi)-1))

for (tau in seq_along(gamma[-1]))

gamma[tau+1] <- sum(psi[seq_len(length(psi)-tau)] * psi[-seq_len(tau)])

w <- seq(0, pi, len=length(gamma))

spec1 <- rep(gamma[1], length(w))

for (i in seq_along(w))

{

for (j in seq_len(length(gamma)-1))

{

z <- 2*cos(w[i]*j)

spec1[i] <- spec1[i] + gamma[j+1] * z

}

}

spec1 <- spec1/(2*pi)

Displaying the spectral density stored in spec1

plot(w, spec1)

shows a curve with a peak at around w=1.028, as mentioned above. Alternatively, the spectral

density can be computed as the the above matches the Fourier transform of the autocovariances,

5



gamma, as defined in equation (5):

spec2 <- rep(NA, length(spec1))

for (i in seq_along(w))

{

tmp <- c(gamma * exp(-1i * w[i] * seq.int(0, length(gamma)-1)))

spec2[i] = (tmp[1] + sum(tmp[-1] + Conj(tmp[-1]))) / (2*pi)

}

print(all(Im(spec2) == 0))

[1] TRUE

print(all.equal(spec1, Re(spec2)))

[1] TRUE

The polynomial in equation (4) is transformed according to the change of variable explained

above by premultuplying the vector of autocovariances, gamma, by the transformation matrix

mat.acgf2poly created before. We can check that, up to a rounding error, these new coeffi-

cients yield the same values of the spectrum for the new variable (2*cos(w[i])). In this way, we

will be able to apply a partial fraction expasion on this polynomial.

newcoefs <- mat.acgf2poly %*% gamma

spec3 <- rep(newcoefs[1], length(w))

for (i in seq_along(w))

{

for (j in seq_along(newcoefs[-1]))

{

x <- (2*cos(w[i]))^j

spec3[i] <- spec3[i] + newcoefs[j+1] * x

}

}

spec3 <- spec3/(2*pi)

all.equal(spec1, spec3)

[1] "Mean relative difference: 7.027414e-05"

3 ARIMA-model-based decomposition

This section introduces the implementation of each step in the ARIMA-model-based decomposition

method. The methodology has been broadly described and developed in the references cited in the

introduction above and others. Here, I will focus on showing the implementation. Theoretical con-

cepts required for the understanding of the overall procedure will be introduced, emphasising those

points that I found more critical for the understanding and implementation of the methodology.

The bottom-line idea is to fit an ARIMA model and assume that the unobserved components

(i.e., trend-cycle and seasonal components) follow an ARIMA model. A partial fraction decompo-

sition is performed on the frequency domain of the ACGF, upon the know coefficients of the fitted

6



model and the roots allocated to each component.

Let xt be a series consists of the sum of a trend, Tt, and a seasonal component, St, as well as

some noise et ∼ NID(0, σ2e):

xt = Tt + St + et .

The methodology assumes that the unobserved components (trend, seasonal) follow an ARIMA

model:
φT (L)Tt = θT (L)a1,t , a1,t ∼ NID(0, σ21)

φS(L)St = θS(L)a2,t , a2,t ∼ NID(0, σ22) .
(6)

An ARIMA model is chosen and fitted to the observed data xt. The coefficients of the models for

the components are obtained from the relationship:

σ2a
θ(B)θ(F )

φ(B)φ(F )
= σ21

θT (B)θT (F )

φT (B)φT (F )
+ σ22

θS(B)θS(F )

φS(B)φS(F )
+ σ2e ,

where B is the backshift operator (the same as the lag operator L) and F is the forward operator

F = B−1. The polynomials in the left-hand-side are known, they come from the fitted model. The

polynomials in the right-hand-side are unknown and are determined as follows: the AR polynomials

(denominators) are obtained upon the roots of the AR polynomial in the fitted model that are

allocated to each component; the MA polynomials (numerators) are then obtained by means of

partial fractial expansion. This is the overall strategy of the procedure. Next, we will see each step

in more detail.

3.1 Fit an ARIMA model to the observed data

Let’s start by generating some data and fitting an ARIMA(0,0,1)(1,0,0) model to it:

set.seed(125)

y <- arima.sim(n=200, model=list(ar=c(0,0,0,0.8), ma=0.5))

y <- ts(round(y, 2), frequency=4)

fit <- arima(y, order=c(0,0,1), seasonal=list(order=c(1,0,0)),

include.mean=FALSE)

c(coef(fit), sigma2 = fit$sigma2)

ma1 sar1 sigma2

0.5475396 0.8567436 1.0395498

Fitted model:

(1− 0.86L4)yt = (1 + 0.55L)εt , σ2ε = 1.04 .

3.2 Allocate the roots of the AR polynomial

The first step is to factorize the AR polynomial of the fitted model and allocate the roots to the

trend and cycle components. We know that an AR polynomial generates cycles where the period

is determined by the angular frequencies of the roots of the polynomial.

Table 1 summarizes long run and seasonal cycles in quarterly and monthly of the seasonal

differencing operators, which are factorised as follows: (1 − L4) = (1 − L)(1 + L2)(1 + L) and

7



(1 − LS) = (1 − L)(1 −
√

3L + L2)(1 − L + L2)(1 + L2)(1 + L + L2)(1 +
√

3L + L2)(1 + L). The

modulus of these roots is equal to unity. In this case the corresponding cycle is shaped as an

accumulation of shocks, εt, rendering the cycle non-stationary. When the inverse of the root lies

inside the unit circle, then the effect of the shocks have a transient effect. Explosive patterns

are generated by roots with modulus larger than unity (inverse root’s modulus lower than unity),

but this is not generally observed in the kind of series intended to be analysed with the package

(macroeconomic indicators, climatological data,...).

Table 1: Long run and seasonal unit roots

Cycles/

Frecuency Period year Root Filter

Monthly series

0 Long run ∞ 0 1 (1− L)
π
6 ,

11π
6 Annual 12; 1.09 1; 11 1

2

(√
3± i

)
(1−

√
3L+ L2)

π
3 ,

5π
3 Biannual 6; 1.2 2; 10 1

2

(
1±
√

3i
)

(1− L+ L2)
π
2 ,

3π
2 4; 4

3 3; 9 ±i (1 + L2)
2π
3 ,

4π
3 Quarterly 3; 1.5 4; 8 −1

2

(
1±
√

3i
)

(1 + L+ L2)
5π
6 ,

7π
6 2, 4; 1.7 5; 7 −1

2

(√
3± i

)
(1 +

√
3L+ L2)

π Bimonthly 2 6 −1 (1 + L)

Quarterly series

0 Long run ∞ 0 1 (1− L)
π
2 ,

3π
2 Annual 4; 4

3 1; 3 ±i (1 + L2)

π Biannual 2 2 −1 (1 + L)

The factorisation of the AR polynomial in the model fitted above, as well as the a summary of

the corresponding inverse roots is returned by roots.allocation:

p <- roots.allocation(fit)

print(p, units="pi")

Roots of AR polynomial

----------------------

(1 - 0.86L^4) = (1 - 0.962L)(1 + 0.962L + 0.926L^2 + 0.891L^3)

Component Root Modulus Argument Period Cycles.per.Year

1 trend 0.9621-0.0000i 0.9621 0 Inf 0

2 seasonal 0.0000+0.9621i 0.9621 pi/2 4.000 1

3 seasonal -0.9621+0.0000i 0.9621 pi 2.000 2

4 seasonal 0.0000-0.9621i 0.9621 3pi/2 1.333 3

Warning messages:

1: In polynomial(p) : imaginary parts discarded in coercion

2: In polynomial(p) : imaginary parts discarded in coercion

The roots can be obtained by means of polyroot. Then the angular frequency, ω, is returned

by Arg, the period is given by 2π
ω and the number of cycles completed in a year is the number of

8



seasons (in the example S = 4) divided by the period. In order to reproduce above, we first get

the roots r <- polyroot(c(1,0,0,0,-coef(fit)[2])) (the roots reported above are the inverse

roots), then the angular frequencies are returned by Arg(r).

Upon this information roots.allocation allocates each root to each component; then, the

coefficients of the AR polynomial is built for each component based on the roots allocated to each

of them. For example, the polynomial related to the seasonal roots can be obtained as folows:

roots2poly(1/p[["roots.stationary"]][["seasonal"]])

The AR polynomials for each component are returned by roots.allocation:

print(polystring(p$trend, ndec=4))

[1] "1 - 0.9621x"

print(polystring(p$seasonal, ndec=4))

[1] "1 + 0.9621x + 0.9256x^2 + 0.8905x^3"

3.3 Pseudo-spectrum

The building block of the procedure is the following relationship (partial fraction decomposition of

the pseudo-spectrum):

σ2
θ(B)θ(F )

φ(B)φ(F )
= σ2a

θT (B)θT (F )

φT (B)φT (F )
+ σ2b

θS(B)θS(F )

φS(B)φS(F )
+ σ2e , (7)

The polynomials in the left-hand-side are known (they are the estimates of the AR and MA parts

of the model fitted to the observed data) and σ2 is the estimated variance of the residuals of

the fitted model. The AR polynomials in the right-hand-side, φ(L), were determined according

to the allocation of roots explained above in Section 3.2. The MA polynomials, θ(L), as well as

the variances of the models for each component remain unknown at this point. After expressing

the known polynomials in terms of the variable x = 2 cosω as explained in Section 2.3, the MA

polynomials can be obtained from the relationship (7).

We will proceed as follows. First, the product of the known polynomials in the backshift and

forward operators are obtained and are transformed in terms of the variable discussed before.

Then, the orders of the polynomials in the numerators of the right-hand-side are determined; the

coefficients related to the variables of the same order from both sides of the relationship are equated.

This will yield a system of equations. Solving the system gives the coefficients of the numerators

of the pseudo-spectrum θ(B)θ(F ) in terms of the transformed variable.

In Section 3.2, the AR polynomials for the trend and seasonal components (φT (B) and φS(B))

were stored in p$trend and p$seasonal, respectively. As the roots of the polynomial φ(B−1) ≡
φ(F ) are the inverse of the roots of the polynomial φ(B), we could get the coefficients of the

polynomial φ(F ) from the inverse roots of φ(B) A less demanding approach is to multiply the φ(B)

by the itself but with the coefficients in reverse order. This is what convolve(type="open") does.

The result is a symmetric polynomial; we need only one side of it (that’s why the first elements are

removed). After extracting the MA coefficients from the fitted model, we do this operation for it

and for the AR polynomials of the components.

9



ma.total <- c(1, fit$model$theta[seq_len(fit$arma[2]+fit$arma[4]*fit$arma[5])])

tmp <- convolve(ma.total, ma.total, type="open")

ma.total.bf <- tmp[-seq_along(ma.total[-1])]

tmp <- convolve(p$trend, p$trend, type="open")

den.trend.bf <- tmp[-seq_along(p$trend[-1])]

tmp <- convolve(p$seasonal, p$seasonal, type="open")

den.seas.bf <- tmp[-seq_along(p$seasonal[-1])]

The polynomial θ(B)θ(F ) of the left-hand-side is stored in ma.total.bf; φT (B)φT (F ) and φS(B)φS(F )

in den.trend.bf and den.seas.bf, respectively for each component.

The transformation discussed above is now performed for each one of these elements so that we

have the coefficients of a polynomial liable to be decomposed into partial fractions. Here, instead

of the multiplication by the matrix mat.acgf2poly created before, we use the interface acgf2poly.

num.psp.total <- acgf2poly(ma.total.bf)

den.psp.trend <- acgf2poly(den.trend.bf)

den.psp.seas <- acgf2poly(den.seas.bf)

print(num.psp.total)

[1] 1.2997996 0.5475396

print(den.psp.trend)

[1] 1.9256045 -0.9620834

print(den.psp.seas)

[1] 0.010657631 0.005324837 1.782348127 0.890508707

As we shall see, the denominator of the left-hand-side will not be needed, but we can compute it

for illustration and debuggin of the code. It can computed doing the same steps as for the other

elements (i.e., convolve and acgf2poly) or simply as the product of the denominators in the

right-hand-side.

ar.total <- c(1, -fit$model$phi)

tmp <- convolve(ar.total, ar.total, type="open")

ar.total.bf <- tmp[-seq_along(ar.total[-1])]

den.psp.total <- acgf2poly(ar.total.bf)

all.equal(den.psp.total, polyprod(den.psp.trend, den.psp.seas))

[1] TRUE

3.4 Partial fraction decomposition

At this point, we have all the necessary elements to carry out the partial fraction decomposition:

num.psp.total contains the coefficients of θ(B)θ(F ); den.psp.trend those of φT (B)φT (F ) and

10



φS(B)φS(F ) is stored in den.psp.seas. The relationship in equation (7):

1.2998 + 0.5475x

0.0205− 0x+ 3.427x2 − 0x3 − 0.8567x4
=

A(x)

1.9256− 0.9621x
+

B(x)

0.0107 + 0.0053x+ 1.7823x2 + 0.8905x3

Now we set A(x) = a0 and B(x) = b0 + b1x+ b2x
2 (these are the highest order polynomials that we

will be able to solve, i.e., same number of equations and variables). Multiplying the denominator

of the left-hand-side by each term in the right-hand-side yields:

1.2998 + 0.5475x =

(0.0107 + 0.0053x+ 1.7823x2 + 0.8905x3)A(x) + (1.9256− 0.9621x)B(x)

Note that as the denominator of the LHS is the product of the denominators in the RHS, the former

vanishes and the actual coefficients are not actually needed. Equating the coefficients related to

elements of the same order in both sides of the equation yields the following system of equations:

lhs <- cbind(den.psp.seas,

matrix(c(rep(c(den.psp.trend, rep(0, 3)), 2), den.psp.trend), nrow=4))

rhs <- c(num.psp.total, rep(0, nrow(lhs)-length(num.psp.total)))

res <- solve(lhs, rhs)

num.psp.trend <- res[1]

num.psp.seas <- res[2:4]

as.vector(res)

[1] 0.1675147 0.6740815 0.6206727 0.1550523


0.0107 1.9256 0 0

0.0053 −0.9621 1.9256 0

1.7823 0 −0.9621 1.9256

0.8905 0 0 −0.9621

×

a0

b0

b1

b2

 =


1.2998

0.5475

0

0


Solving the system gives the coefficients of A(x) and B(x).

A(x) = 0.1675 ,

B(x) = 0.6741 + 0.6207x+ 0.1551x2 .

The coefficients of these polynomials are in terms of the variable x = 2 cosω, therefore, in order to

get the coefficients of the corresponding MA polynomials we will need to undo the transformation.

3.5 Canonical decomposition

An issue remains to be addressed. How to allocate the the variance across the components? Ac-

tually, the relationship solved above can be met for several definitions of the components. Given

an admissible decomposition, we can get another valid one by simply removing constant fraction

of one of the components and assigning it to another component. The solution adopted in practice

11



is to choose the so-called canonical decomposition. This solution defines the components (except

for the irregular) clean of white noise, i.e., it is not possible to extract a white noise signal (a

fraction of the variance) and assign it to other component. Despite being motivated by the need

to choose a single decomposition among all the possible ones, this solution seems sensible from a

practical point of view, since it implies that the estimated trend and seasonal components will not

be contaminated by noise.

In other words, the canonical decomposition consists in maximising the variance of the irregular

subject to the polynomials that we have obtained so far. To do so, the terms θ(B)θ(F )
φ(B)φ(F ) related to

each component are in the range [−π, π]; and the minimum value within this range is from the

corresponding component and assigned to the variance of the irregular component. This is done in

the code below. Remember that we are still working with the polynomials in terms of the variable

2 cosω, therefore the range [−π, π] becomes [−2, 2]. The miminum is found by means of optimize,

the relevant end points for each component are evaluated separately.

fobj <- function(x, p1, p2) polyeval(p1, x) / polyeval(p2, x)

res <- optimize(f=fobj, interval=c(-2, 2), p1=num.psp.trend, p2=den.psp.trend)

trend.minval <- min(res$obj, fobj(-2, num.psp.trend, den.psp.trend))

num.trend <- c(num.psp.trend, 0) - den.psp.trend * trend.minval

res <- optimize(f=fobj, interval=c(-2, 2), p1=num.psp.seas, p2=den.psp.seas)

seas.minval <- min(res$obj, fobj(2, num.psp.seas, den.psp.seas))

num.seas <- c(num.psp.seas, 0) - den.psp.seas * seas.minval

sigma2.irregular <- trend.minval + seas.minval

print(polystring(num.trend))

[1] "0.08 + 0.04x"

print(polystring(num.seas))

[1] "0.67 + 0.62x - 0x^2 - 0.08x^3"

print(sigma2.irregular)

[1] 0.1278762

3.6 Recovery of MA coefficients

The vector num.trend and num.seas contain the coefficients of the numerators θT (B)θT (F ) and

θS(B)θS(F ) in terms of the variable 2 cosω. From these vectors we can get the coefficients of the MA

polynomials and the variances of the ARIMA models for each component. A possible approach is

to first undo the change of variable (premultiplying by the inverse of mat.acgf2poly); this will give

as the coefficients of the ACGF of the MA process, i.e., the autocovariances. Then, we can apply an

algorithm that maps the autocovariances to the coefficients and variance of a MA process. If we were

dealing with an AR process, this algorithm would be the well-known Yule-Walker equations. For

a MA process, the algorithm is not so straightforward. The functions acov2ma.init and acov2ma

in the package tsdecomp implement the algorithms described in (Pollock, 1999, Chapter 17).

ma.trend.acovs <- solve(mat.acgf2poly[1:2,1:2]) %*% num.trend

tmp <- acov2ma(x=ma.trend.acovs, init=acov2ma.init(ma.trend.acovs)$coef)

12



ma.trend.coefs <- tmp$coef

sigma2.trend <- tmp$sigma2

ma.seas.acovs <- solve(mat.acgf2poly[1:4,1:4]) %*% num.seas

tmp <- acov2ma(x=ma.seas.acovs, init=acov2ma.init(ma.seas.acovs)$coef)

ma.seas.coefs <- tmp$coef

sigma2.seas <- tmp$sigma2

print(polystring(ma.trend.coefs))

[1] "1 + x"

print(polystring(ma.seas.coefs))

[1] "1 + 1.31x + 0.46x^2 - 0.33x^3"

c(irregular = sigma2.irregular, trend = sigma2.trend, seas = sigma2.seas)

irregular trend seas

0.12787616 0.04186303 0.22584534

In some cases, I observed that the algorithm acov2ma strugges to reach a stable solution. It

may be due to the presence of several roots of modulus greater than unity. Inspecting the code of

the function pu2ma in the package SSMMATLAB (Gómez, 2015), I found an alternative procedure to

get the coefficients of the MA polynomial from the partial fraction in the variable 2 cosω. This is

how I understand this alternative procedure: first, the roots of num.seas are obtained; num.seas

is one side of the numerator of the symmetric polynomial θS(B)θS(F ). We can get the roots of

num.seas as usual by means of polyroot. The roots of θS(B) are required, nonetheless. As the

roots of θS(B) are the inverse of the roots of θS(B), we know that a root λ of the symmetric

polynomial θS(B)θS(F ) will be of the form (x − δ)(x − 1/δ) = 1 − ((δ2 + 1)/δ)x + x2. Given the

roots λ = (δ2 + 1)/δ of θS(B)θS(F ), we can get the roots δ of θS(B) by solving the quadratic

equation ax2 + bx+ c with a = c = 1 and b = λ.

r <- polyroot(num.seas)

tmp <- sqrt(r^2 - 4)

#r <- c((r + tmp)/2, (r - tmp)/2)

r <- (r + tmp)/2

roots2poly(r)

[1] 1.0000000 1.3055754 0.4550511 -0.3326465

Summing up, the models for the components are:

Trend: (1− 0.9621L)Tt = (1 + L)at , σ2a = 0.0419 .

Seasonal: (1 + 0.9621L+ 0.9256L2 + 0.8905L3)St =

(1 + 1.3056L+ 0.455L2 − 0.3326L3)bt , σ2b = 0.2258 .

3.7 Filtering

After having found the models for the components, we are now interested on an estimate of those

components. A possible approach is to put the models in state-space form and run the Kalman

filter and smoother. Alternatively, we can use the following result.

13



The minimum mean squared error estimator of the component st –in the observed series xt– is

given by the following filtering operation:

E(st|X) ≡ ŝt =

(
v0 +

∞∑
i=1

vi(B
i + F i)

)
xt (8)

= v0 + v1(xt−1 + xt+1) + v2(xt−2 + xt+2) + · · ·

= v(B,F )xt ,

where X = {x−∞, . . . , xt, . . . , x∞} and v(B,F ) is the Wiener-Kolmogorov filter, a centered and

symmetric whose weights vi are given by the ratio of the MA representation of the models for the

signal and for the observed series in the backward and forward operators:

v(B,F ) = σ2s
ψs(B)ψs(F )

ψ(B)ψ(F )
.

Replacing the polynomials ψ by the AR and MA terms –remember from equation (1) ψ(L) = θ(L)
φ(L)–

and canceling roots in the φ polynomials, the filter can be expressed as:

v(B,F ) = σ2s
φn(B)θs(B)φn(F )θs(F )

θ(B)θ(F )
,

where φn() are the AR polynomials of the model for the non-signal component, i.e., the component

other than st. Thus, the centered and symmetric filter v(B,F ) will also be convergent if the MA

polynomial of the model fitted to the observed series is invertible.

Looking at the expression of the ACGF in equation (3), it can be deduced that the weights of

the filter v(B,F ) are given by the ACGF of the model:

θ(L)xt = φn(L)θs(L)bt , bt ∼ NID(0, σ2s) ,

where θ(L) is the MA of the model fitted to the observed data, θs(L) is the MA of the component

(signal) we want to estimate and φn(L) is the AR polynomial of the remaining components.

Based on the above result, an estimate of the trend is obtained below. The function ARMAacov

is similar to stats::ARMAacf, but instead of the autocorrelations returns the theoretical autoco-

variances of an ARMA model.

n <- length(y)

nm1x2 <- 2*(n-1)

y2 <- c(rep(0, n-1), y, rep(0, n-1))

wtrend <- ARMAacov(ar=-ma.total[-1],

ma=polyprod(p$seasonal, ma.trend.coefs)[-1],

lag.max=n-1, sigma2=sigma2.trend)

trend <- filter(y2, filter=c(rev(wtrend[-1]), wtrend), method="conv", sides=1)

trend <- ts(trend[-seq_len(nm1x2)])

tsp(trend) <- tsp(y)

#plot(y)

#lines(trend)

14



According to the definition of the ARMA model used by ARMAacov (the AR coefficients are defined

in the right-hand-side), the sign of θ(L) must be changed, because here it plays the role of the AR

polynomial. Also, the first coefficient in the AR and MA polynomials φ0 = 1 and θ0 = 1 are not

required by ARMAacov. φn(L) is the AR polynomial of the seasonal component, p[["seasonal"]],

and θs(L) the MA coefficients of the ma.trend.coefs component that is being estimated (trend).

The estimated trend is shown in Figure 1. Similarly, an estimate of the seasonal component can

be obtained as follows:

wseas <- ARMAacov(ar=-ma.total[-1], ma=polyprod(p$trend, ma.seas.coefs)[-1],

lag.max=n-1, sigma2=sigma2.seas)

seas <- filter(y2, filter=c(rev(wseas[-1]), wseas), method="conv", sides=1)

seas <- ts(seas[-seq_len(nm1x2)])

tsp(seas) <- tsp(y)

Figure 1: Original series and estimated trend

0 10 20 30 40 50

−8

−6

−4

−2

0

2

4

time

3.8 Theoretical component, estimator and empirical signal

Recap: Two ARMA models are involved in the description of the methodology given above.

1) Theoretical ARMA models assumed for the components, given in equation (6):

φs(L)st = θs(L)bt , as,t ∼ NID(0, σ2s) .

2) ARMA model implied by the estimator ŝt. Replacing the ARMA model for the observed series

xt = θ(B)/φ(B)at in the expression of the estimator ŝt = v(B,F )xt and canceling AR factors

yields:

ŝt = σ2s
θs(B)θs(F )φn(F )

φs(B)θ(F )
at , at ∼ NID(0, σ2a) .

The ACF of the ARMA models for the theoretical component and for the estimator, as well as

the empirical ACF of the estimated signal can be compared in order to assess the reliability of the

decomposition.

15



The ACF of the theoretical ARMA models for the trend and the seasonal components are

obtained as follows. The stationary transformation of the model is considered, hence, only the

stationary roots in the corresponding AR polynomials are taken:

acf1.trend <- ARMAacf(ar=-p$polys.stationary$trend[-1],

ma=ma.trend.coefs[-1], lag.max=10)[-1]

acf1.seas <- ARMAacf(ar=-p$polys.stationary$seasonal[-1],

ma=ma.seas.coefs[-1], lag.max=10)[-1]

head(cbind(acf1.trend, acf1.seas))

acf1.trend acf1.seas

1 0.9810417 -0.04226707

2 0.9438439 -0.81712549

3 0.9080566 -0.09469756

4 0.8736262 0.88508115

5 0.8405012 -0.03621205

6 0.8086323 -0.70006707

The ACF of the corresponding estimators can be computed as follows (again considering only the

stationary roots of the AR polynomials; also, as the root of the MA polynomial theta turns out

to be non-invertible and it belongs to the AR part of the ARMA model implied by the estimator,

it is removed and the MA polynomial collapses to 1):

theta <- c(1, fit$model$theta[seq_len(fit$arma[2]+fit$arma[4]*fit$arma[5])])

print(Mod(polyroot(theta)))

[1] 1.826352

theta <- 1

ar.coefs <- -polyprod(p$polys.stationary$trend, theta)[-1]

ma.coefs <- convolve(ma.trend.coefs, ma.trend.coefs, type="open")

ma.coefs <- polyprod(ma.coefs, roots2poly(1/polyroot(p$transitory)))

ma.coefs <- polyprod(ma.coefs, roots2poly(1/polyroot(p$seasonal)))

acf2.trend <- ARMAacf(ar=ar.coefs, ma=ma.coefs[-1], lag.max=10)[-1]

ar.coefs <- -polyprod(p$polys.stationary$seasonal, theta)[-1]

ma.coefs <- convolve(ma.seas.coefs, ma.seas.coefs, type="open")

ma.coefs <- polyprod(ma.coefs, roots2poly(1/polyroot(p$trend)))

ma.coefs <- polyprod(ma.coefs, roots2poly(1/polyroot(p$transitory)))

acf2.seas <- ARMAacf(ar=ar.coefs, ma=ma.coefs[-1], lag.max=10)[-1]

head(cbind(acf2.trend, acf2.seas))

acf2.trend acf2.seas

1 0.9924311 -0.05339670

2 0.9716376 -0.82280267

3 0.9420733 -0.06789316

4 0.9084901 0.85370512

5 0.8743501 -0.04959640

6 0.8411978 -0.69403219

16



Finally, it is straightforward to obtain the ACF of the empirical estimates by means of stats::acf:

acf3.trend <- acf(trend, lag.max=10, plot=FALSE)$acf[-1,,1]

acf3.seas <- acf(seas, lag.max=10, plot=FALSE)$acf[-1,,1]

head(cbind(acf3.trend, acf3.seas))

acf3.trend acf3.seas

[1,] 0.9878892 -0.004427556

[2,] 0.9560306 -0.963391413

[3,] 0.9115250 -0.015458158

[4,] 0.8609166 0.940839480

[5,] 0.8084744 -0.011884538

[6,] 0.7552822 -0.884066935

Figure 2 displays the ACF of the three elements, along with 95% confidence bands (the standard

deviation of the ACF is based on a Bartlett’s approximation, similar to stats::plot.acf(ci.type="ma")).

Figure 2: Autocorrelation functions

−0.5

0.0

0.5

1.0

ACF of trend

1 2 3 4 5 6 7 8 9 10

theoretical

estimator

empirical

95% confidence bands (estimator)
−1.0

−0.5

0.0

0.5

1.0

ACF of seasonal

1 2 3 4 5 6 7 8 9 10

theoretical

estimator

empirical

95% confidence bands (estimator)

4 Examples

4.1 Seasonal autoregressive model

Generate data and fit model:

set.seed(125)

y <- arima.sim(n=200, model=list(ar=c(0,0,0,0.6)))

y <- ts(round(y, 2), frequency=4)

fit <- arima(y, seasonal=list(order=c(1,0,0)), include.mean=FALSE)

c(coef(fit), sigma2 = fit$sigma2)

17



sar1 sigma2

0.6841932 1.0959102

Fitted model:

(1− 0.684L4)yt = εt , σ2ε = 1.096 .

Roots allocation

p <- roots.allocation(fit)

print(p, units="pi")

Roots of AR polynomial

----------------------

(1 - 0.68L^4) = (1 - 0.909L)(1 + 0.909L + 0.827L^2 + 0.752L^3)

Component Root Modulus Argument Period Cycles.per.Year

1 trend 0.9095+0.0000i 0.9095 0 Inf 0

2 seasonal 0.0000+0.9095i 0.9095 pi/2 4.000 1

3 seasonal -0.9095+0.0000i 0.9095 pi 2.000 2

4 seasonal 0.0000-0.9095i 0.9095 3pi/2 1.333 3

Warning message:

In polynomial(p) : imaginary parts discarded in coercion

Figure 3: Allocation of roots in the fitted seasonal AR(1) model

pi/2

π

3pi/2

0

−1.0

−0.5

0.0

0.5

1.0

Not all seasonal AR models generate cycles of seasonal periodicity. If the sign of the coefficient

in the seasonal AR(1) is positive (when moved to the left-hand-side of the ARMA model), the

factorisation does not involve roots related to seasonal frequencies. Example:

18



fit2 <- arima(y, seasonal=list(order=c(1,0,0)), include.mean=FALSE, fixed=-0.6)

print(coef(fit2))

sar1

-0.6

roots.allocation(fit2)

Roots of AR polynomial

----------------------

(1 + 0.6L^4) = (1 - 0L - 0L^2 - 0L^3 + 0.6L^4)

Component Root Modulus Argument Period Cycles.per.Year

1 trend 0.6223+0.6223i 0.8801 0.7854 8.000 0.5

2 trend -0.6223+0.6223i 0.8801 2.3562 2.667 1.5

3 trend -0.6223-0.6223i 0.8801 3.9270 1.600 2.5

4 trend 0.6223-0.6223i 0.8801 5.4978 1.143 3.5

Warning message:

In polynomial(p) : imaginary parts discarded in coercion

Pseudo-spectrum After some operations, we arrive to the following expression for the pseudo-

spectrum (in the variable x = 2 cos(ω)).

Polynomial division is not required.

Pseudo-spectrum (reference relationship):

1

0.1− 0x+ 2.737x2 − 0.684x4
=

A(x)

1.827− 0.909x
+

B(x)

0.055 + 0.027x+ 1.511x2 + 0.752x3

Partial fraction decomposition The numerators of the partial fractions are obtained here.

Actually, they are already returned by pseudo.spectrum, which calls partial.fraction. Here,

we show this stage in more detail.

pfd <- partial.fraction(psp$total.numerator, psp$den$trend,

psp$den$trans, psp$den$seas)

print(pfd$num.trend)

[1] 0.08124031

print(pfd$num.seasonal)

[1] 0.54487057 0.27000561 0.06719871

Set A(x) = a0, B(x) = b0 + b1x+ b2x
2 and multiply the denominator of the LHS (products of the

denominators in the RHS) by each term in the RHS.

1 = (0.055 + 0.027x+ 1.511x2 + 0.752x3)A(x) + (1.827− 0.909x)B(x)

19



Equating the coefficients related to elements of the same order in both sides of the equation yields

the following system of equations:
0.055 1.827 0 0

0.027 −0.909 1.827 0

1.511 0 −0.909 1.827

0.752 0 0 −0.909

×

a0

c0

c1

c2

 =


1

0

0

0

 .
Solving the system gives the coefficients of the polynomials in the numerators of the partial fractions:

A(x) = 0.081 ,

B(x) = 0.545 + 0.27x+ 0.067x2 .

Canonical decomposition

cd <- canonical.decomposition(pfd$num.trend, psp$den$trend,

pfd$num.trans, psp$den$trans,

pfd$num.seas, psp$den$seas, psp$quotient)

cd

MA polynomials

--------------

Trend:

(1 + L)a_t, a_t ~ IID(0, 0.0203)

Seasonal:

(1 - 0.184L - 0.475L^2 - 0.341L^3)c_t, c_t ~ IID(0, 0.245)

Variances

---------

trend seasonal irregular

0.02026 0.24502 0.13349

Roots

-----

Component Root Modulus Argument Period

1 trend -1.000+0.0000i 1.0000 3.142e+00 2.000e+00

2 seasonal 1.000+0.0000i 1.0000 1.490e-08 4.217e+08

3 seasonal -0.408+0.4183i 0.5843 2.344e+00 2.681e+00

4 seasonal -0.408-0.4183i 0.5843 3.939e+00 1.595e+00

Models for the components. The denominators (AR) of the corresponding ARMA models are those

obtained in the allocation of the AR roots; the numerators (MA) are those polynomials obtained

20



in the canonical decomposition.

Trend: (1− 0.909L)Tt = (1 + L)at , σ2a = 0.02 .

Seasonal: (1 + 0.909L+ 0.827L2 + 0.752L3)St =

(1− 0.184L− 0.475L2 − 0.341L3)ct , σ2c = 0.245 .

Filtering The Wiener-Kolmogorov filter for the component st is given by the ACGF of the model:

θ(L)zt = φn(L)θs(L)at .

comp <- filtering(x=y, mod=fit,

trend=list(ar=p$trend, ma=cd$trend$coef, sigma2=cd$trend$sigma2),

transitory=list(ar=p$trans, ma=cd$trans$coef, sigma2=cd$trans$sigma2),

seasonal=list(ar=p$seas, ma=cd$seas$coef, sigma2=cd$seas$sigma2),

irregular.sigma2=cd$irregular.sigma2)

#plot(comp, overlap.trend = TRUE, args.trend = list(col="red"),

# set.pars = list(las=1))

4.2 The Airlines model and data

The Airlines model, ARIMA(0,1,1)(0,1,1), accommodates fairly well the dynamic of many macroe-

conomic time series data and is often used in practice. Here, we use this model with the classic

Box & Jenkins airline data (monthly totals of international airline passengers, 1949 to 1960, in

logarithms).

y <- round(log(AirPassengers),2)

fit <- arima(y, order=c(0,1,1), seasonal=list(order=c(0,1,1)))

c(coef(fit), sigma2 = fit$sigma2)

ma1 sma1 sigma2

-0.405322943 -0.559778840 0.001340141

Fitted model:

(1− L)(1− L12)yt = (1− 0.405L)(1− 0.56L12)εt , σ2ε = 0.001 .

Roots allocation

p <- roots.allocation(fit)

print(polystring(p$trend))

[1] "1 - 2x + x^2"

print(polystring(p$seas))

[1] "1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11"

print(p, units="pi")

21



Figure 4: Filtered components

−4

−2

0

2

4   observed and trend

−3

−2

−1

0

1

2

3  seasonal

−2

−1

0

1
  seasonally adjusted

−0.4

−0.2

0.0

0.2

0.4  irregular

0 10 20 30 40 50
time

Roots of AR polynomial

----------------------

(1 - L)(1 - L^12) = (1 - 2L + L^2)(1 + L + L^2 + L^3 + L^4 + L^5 + L^6 + L^7 + L^8 + L^9 + L^10 + L^11)

Component Root Modulus Argument Period Cycles.per.Year

1 trend 1.000+0.000i 1 0 Inf 0

2 trend 1.000+0.000i 1 0 Inf 0

3 seasonal 0.866+0.500i 1 pi/6 12.000 1

4 seasonal 0.500+0.866i 1 2pi/6 6.000 2

5 seasonal 0.000+1.000i 1 3pi/6 4.000 3

6 seasonal -0.500+0.866i 1 4pi/6 3.000 4

7 seasonal -0.866+0.500i 1 5pi/6 2.400 5

8 seasonal -1.000+0.000i 1 pi 2.000 6

9 seasonal -0.866-0.500i 1 7pi/6 1.714 7

10 seasonal -0.500-0.866i 1 8pi/6 1.500 8

11 seasonal 0.000-1.000i 1 9pi/6 1.333 9

12 seasonal 0.500-0.866i 1 10pi/6 1.200 10

13 seasonal 0.866-0.500i 1 11pi/6 1.091 11

22



Pseudo-spectrum After some operations, we arrive to the following expression for the pseudo-

spectrum (in the variable x = 2 cos(ω)).

Polynomial division:

0.23− 0.08x+ 23.46x2 − 8.17x3 − 68.43x4 + 23.82x5 + 73x6 − 25.41x7 − 35.19x8 + 12.25x9 + 7.82x10 − 2.72x11 − 0.65x12 + 0.23x13

72x2 − 36x3 − 210x4 + 105x5 + 224x6 − 112x7 − 108x8 + 54x9 + 24x10 − 12x11 − 2x12 + x13
=

0.226− 0.079x+ 7.127x2 − 20.786x4 + 22.172x6 − 10.69x8 + 2.376x10 − 0.198x12︸ ︷︷ ︸
Remainder

+ 0.227︸ ︷︷ ︸
Quotient

.

Pseudo-spectrum (reference relationship):

0.226− 0.079x+ 7.127x2 − 20.786x4 + 22.172x6 − 10.69x8 + 2.376x10 − 0.198x12

72x2 − 36x3 − 210x4 + 105x5 + 224x6 − 112x7 − 108x8 + 54x9 + 24x10 − 12x11 − 2x12 + x13
=

A(x)

4− 4x+ x2
+

B(x)

18x2 + 9x3 − 48x4 − 24x5 + 44x6 + 22x7 − 16x8 − 8x9 + 2x10 + x11
.

Partial fraction decomposition The numerators of the partial fractions are obtained here.

Actually, they are already returned by pseudo.spectrum, which calls partial.fraction. Here,

we show this stage in more detail.

pfd <- partial.fraction(psp$total.numerator, psp$den$trend,

psp$den$trans, psp$den$seas)

print(pfd$num.trend)

[1] 0.4088311 -0.2041776

print(pfd$num.seasonal)

[1] 0.056408138 0.036770782 -0.035425600 -0.045689135 0.132073693

[6] 0.146351548 -0.065977061 -0.105182554 -0.002855571 0.024391925

[11] 0.006216963

Set A(x) = a0 +a1x, B(x) = b0 +b1x+b2x
2 +b3x

3 +b4x
4 +b5x

5 +b6x
6 +b7x

7 +b8x
8 +b9x

9 +b10x
10

and multiply the denominator of the LHS (products of the denominators in the RHS) by each term

in the RHS.

0.226− 0.079x+ 7.127x2 − 20.786x4 + 22.172x6 − 10.69x8 + 2.376x10 − 0.198x12 =

(18x2 + 9x3 − 48x4 − 24x5 + 44x6 + 22x7 − 16x8 − 8x9 + 2x10 + x11)A(x) + (4− 4x+ x2)B(x) .

23



Equating the coefficients related to elements of the same order in both sides of the equation yields

the following system of equations:

0 0 4 0 0 0 0 0 0 0 0 0 0

0 0 −4 4 0 0 0 0 0 0 0 0 0

18 0 1 −4 4 0 0 0 0 0 0 0 0

9 18 0 1 −4 4 0 0 0 0 0 0 0

−48 9 0 0 1 −4 4 0 0 0 0 0 0

−24 −48 0 0 0 1 −4 4 0 0 0 0 0

44 −24 0 0 0 0 1 −4 4 0 0 0 0

22 44 0 0 0 0 0 1 −4 4 0 0 0

−16 22 0 0 0 0 0 0 1 −4 4 0 0

−8 −16 0 0 0 0 0 0 0 1 −4 4 0

2 −8 0 0 0 0 0 0 0 0 1 −4 4

1 2 0 0 0 0 0 0 0 0 0 1 −4

0 1 0 0 0 0 0 0 0 0 0 0 1



×



a0

a1

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10



=



0.226

−0.079

7.127

0

−20.786

0

22.172

0

−10.69

0

2.376

0

−0.198



.

Solving the system gives the coefficients of the polynomials in the numerators of the partial fractions:

A(x) = 0.409− 0.204x ,

B(x) = 0.056 + 0.037x− 0.035x2 − 0.046x3 + 0.132x4 + 0.146x5

− 0.066x6 − 0.105x7 − 0.003x8 + 0.024x9 + 0.006x10 .

Canonical decomposition As explained in Section 3.5, among all the solutions that meet the

relationship of the pseudo-spectrum, the canonical decomposition chooses the solution that max-

imises the variance of the irregular component. To do so, the value (variance) at which the pseudo-

spectrum defined for each component reaches a minimum is removed from the component and

assigned to the irregular.

For the trend, the minimum is reached at 0.051:

fobj <- function(x, p1, p2) polyeval(p1, x) / polyeval(p2, x)

res <- optimize(f=fobj, interval=c(-2, 2), p1=psp$num$trend, p2=psp$den$trend)

trend.minval <- min(res$obj, fobj(-2, psp$num$trend, psp$den$trend))

print(trend.minval)

[1] 0.05107415

num.trend <- c(psp$num$trend, 0) - psp$den$trend * trend.minval

irregular.sigma2 <- trend.minval

polystring(num.trend)

[1] "0.2 - 0x - 0.05x^2"

This also gives us the final polynomial num.trend, which is related to the MA polynomial of the

model obtained for the trend component.

ma.trend.acovs <- solve(mat.acgf2poly[1:3,1:3]) %*% num.trend

tmp <- acov2ma(x=ma.trend.acovs, init=acov2ma.init(ma.trend.acovs)$coef)

print(tmp$coef)

24



[,1]

[1,] 1.00000000

[2,] 0.04711517

[3,] -0.95288488

print(tmp$sigma2)

[1] 0.05359949

For the seasonal component, we proceed in the same way and obtain the autocovariances of the

MA related to the model obtained for the seasonal component.

res <- optimize(f=fobj, interval=c(-2, 2), p1=psp$num$seas, p2=psp$den$seas)

seas.minval <- min(res$obj, fobj(-2, psp$num$seas, psp$den$seas))

print(seas.minval)

[1] 0.02389556

num.seas <- c(psp$num$seas, 0) - psp$den$seas * seas.minval

irregular.sigma2 <- irregular.sigma2 + seas.minval

polystring(num.seas)

ma.seas.acovs <- solve(mat.acgf2poly[1:12,1:12]) %*% num.seas

print(ma.seas.acovs)

[,1]

[1,] 0.538495912

[2,] 0.492360767

[3,] 0.409907951

[4,] 0.311096568

[5,] 0.211126435

[6,] 0.120914015

[7,] 0.047568343

[8,] -0.005133046

[9,] -0.036268189

[10,] -0.047294763

[11,] -0.041574162

[12,] -0.023895563

Here, the algorithm that computes numerically the mapping from the autocovariances to the coef-

ficients of a MA model, failed to converge to a stable or reliable solution: acov2ma.init converged

to a zero variance and maxiter needed to be limited to 4; acov2ma did not converge even for a

relatively large number of iterations.

tmp1 <- acov2ma(x=ma.seas.acovs, maxiter=120,

init=acov2ma.init(ma.seas.acovs, maxiter=4)$coef)

tmp2 <- acov2ma(x=ma.seas.acovs, maxiter=150,

init=acov2ma.init(ma.seas.acovs, maxiter=4)$coef)

print(cbind(tmp1$coef, tmp2$coef))

[,1] [,2]

[1,] 1.00000000 1.00000000

25



[2,] 1.36260374 1.22683436

[3,] 1.49662749 1.23755060

[4,] 1.39583895 1.47400757

[5,] 2.01534420 1.63553658

[6,] 1.95775615 1.86603511

[7,] 1.85072027 1.69490622

[8,] 1.48905271 1.13149947

[9,] 0.43106355 0.55519604

[10,] 0.08802272 -0.08150671

[11,] -0.44760418 -0.40217737

[12,] -0.92720037 -0.77939083

print(c(tmp1$sigma2, tmp2$sigma2))

[1] 0.02466157 0.03059028

This problem may come from the presence of several roots of modulus greater than unity. Below,

the other approach discussed in Section 3.6 is applied:

r <- polyroot(num.seas)

tmp <- sqrt(r^2 - 4)

r <- c((r + tmp)/2, (r - tmp)/2)

r <- r[order(Mod(r))]

r <- r[seq_len(length(r)/2)]

mapoly <- roots2poly(1/r)

sigma2 <- num.seas[length(num.seas)]/Re(prod(-r))

print(mapoly)

[1] 1.00000000 1.42676056 1.57667998 1.47559517 1.25346821 1.01161355

[7] 0.74316608 0.44023586 0.18941725 0.03266987 -0.16646163 -0.50043696

print(sigma2)

[1] 0.0477494

We can now build the coefficients of the MA polynomial from these roots. The interesting point

of this approach is that we can now choose the roots to be included in the MA polynomial, in

particular, roots with modulus larger than unity can be discarded.

cd <- canonical.decomposition(pfd$num.trend, psp$den$trend,

pfd$num.trans, psp$den$trans,

pfd$num.seas, psp$den$seas, psp$quotient)

cd

MA polynomials

--------------

Trend:

(1 + 0.047L - 0.953L^2)a_t, a_t ~ IID(0, 0.0536)

Seasonal:

(1 + 1.427L + 1.577L^2 + 1.476L^3 + 1.253L^4 + 1.012L^5 + 0.743L^6 + 0.44L^7 + 0.189L^8 + 0.033L^9 - 0.166L^10 - 0.5L^11)c_t, c_t ~ IID(0, 0.0477)

26



Variances

---------

trend seasonal irregular

0.05360 0.04775 0.30186

Roots

-----

Component Root Modulus Argument Period

1 trend 0.9529+0.0000i 0.9529 0.0000 Inf

2 trend -1.0000+0.0000i 1.0000 3.1416 2.000

3 seasonal 0.6784+0.0000i 0.6784 0.0000 Inf

4 seasonal 0.6381+0.6488i 0.9100 0.7938 7.916

5 seasonal 0.2422+0.9178i 0.9493 1.3128 4.786

6 seasonal -0.2604+0.9655i 1.0000 1.8343 3.425

7 seasonal -0.7317+0.6816i 1.0000 2.3916 2.627

8 seasonal -0.9758+0.2188i 1.0000 2.9210 2.151

9 seasonal -0.9546-0.2980i 1.0000 3.4442 1.824

10 seasonal -0.6827-0.7307i 1.0000 3.9610 1.586

11 seasonal -0.2604-0.9655i 1.0000 4.4489 1.412

12 seasonal 0.2422-0.9178i 0.9493 4.9703 1.264

13 seasonal 0.6381-0.6488i 0.9100 5.4894 1.145

Models for the components. The denominators (AR) of the corresponding ARMA models are those

obtained in the allocation of the AR roots; the numerators (MA) are those polynomials obtained

in the canonical decomposition.

Trend: (1− 2L+ L2)Tt = (1 + 0.047L− 0.953L2)at , σ2a = 0.054 .

Seasonal: (1 + L+ L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10 + L11)St =

(1 + 1.427L+ 1.577L2 + 1.476L3 + 1.253L4 + 1.012L5+

0.743L6 + 0.44L7 + 0.189L8 + 0.033L9 − 0.166L10 − 0.5L11)ct , σ2c = 0.048 .

The components and seasonally adjusted series are obtained as follows:

comp <- filtering(x=y, mod=fit,

trend=list(ar=p$trend, ma=cd$trend$coef, sigma2=cd$trend$sigma2),

transitory=list(ar=p$trans, ma=cd$trans$coef, sigma2=cd$trans$sigma2),

seasonal=list(ar=p$seas, ma=cd$seas$coef, sigma2=cd$seas$sigma2),

irregular.sigma2=cd$irregular.sigma2, extend=72)

#plot(comp, overlap.trend = TRUE, args.trend = list(col="red"))

27



Figure 5: Airlines data (logs.). Filtered components

5.0

5.5

6.0

6.5
  observed and trend

−0.2

−0.1

0.0

0.1

0.2
  seasonal

4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2   seasonally adjusted

−0.04

−0.02

0.00

0.02

0.04  irregular

1950 1952 1954 1956 1958 1960

time

4.3 Polynomial division and transitory component

This example shows a case (an ARIMA(0,1,2) model) where a transitory component which is

not set in the allocation of the AR roots, shows up when performing polynomial division in the

pseudospectrum.

Generate data and fit model:

set.seed(123)

y <- arima.sim(n=200, model=list(order=c(0,1,2), ma=c(-0.6, 0.2)))

y <- ts(round(y, 2))

fit <- arima(y, order=c(0,1,2), include.mean=FALSE)

c(coef(fit), sigma2 = fit$sigma2)

ma1 ma2 sigma2

-0.6764766 0.1931481 0.9051298

Fitted model:

(1− L)yt = (1− 0.676L+ 0.193L2)εt , σ2ε = 0.905 .

28



Roots allocation

p <- roots.allocation(fit)

print(p, units="pi")

Roots of AR polynomial

----------------------

(1 - L) = (1 - L)

Component Root Modulus Argument Period Cycles.per.Year

1 trend 1 1 0 Inf 0

Pseudo-spectrum After some operations, we arrive to the following expression for the pseudo-

spectrum (in the variable x = 2 cos(ω)).

Polynomial division:

1.109− 0.807x+ 0.193x2

2− x
= 0.267︸ ︷︷ ︸

Remainder

+ 0.421− 0.193x︸ ︷︷ ︸
Quotient

.

Pseudo-spectrum (reference relationship):

0.267

2− x
=
A(x)

2− x
.

Partial fraction decomposition The numerators of the partial fractions are obtained here.

Actually, they are already returned by pseudo.spectrum, which calls partial.fraction. Here,

we show this stage in more detail.

pfd <- partial.fraction(psp$total.numerator, psp$den$trend,

psp$den$trans, psp$den$seas)

print(pfd$num.trend)

[1] 0.2669495

print(pfd$num.seasonal)

NULL

Set A(x) = a0 and multiply the denominator of the LHS (products of the denominators in the

RHS) by each term in the RHS.

0.267 = (1)A(x) .

Equating the coefficients related to elements of the same order in both sides of the equation yields

the following system of equations: [
1
]
×
[
a0

]
=
[

0.267
]
.

Solving the system gives the coefficients of the polynomials in the numerators of the partial fractions:

A(x) = 0.267 .

29



Canonical decomposition

cd <- canonical.decomposition(pfd$num.trend, psp$den$trend,

pfd$num.trans, psp$den$trans,

pfd$num.seas, psp$den$seas, psp$quotient)

cd

MA polynomials

--------------

Trend:

(1 + L)a_t, a_t ~ IID(0, 0.0667)

Transitory:

(1 - L)b_t, b_t ~ IID(0, 0.1931)

Variances

---------

trend transitory irregular

0.06674 0.19315 0.10128

Roots

-----

Component Root Modulus Argument Period

1 trend -1+0i 1 3.142 2

2 transitory 1+0i 1 0.000 Inf

Models for the components. The denominators (AR) of the corresponding ARMA models are those

obtained in the allocation of the AR roots; the numerators (MA) are those polynomials obtained

in the canonical decomposition.

Trend: (1− L)Tt = (1 + L)at , σ2a = 0.067 .

Transitory: (1)Ct = (1− L)bt , σ2b = 0.193 .

Filtering The Wiener-Kolmogorov filter for the component st is given by the ACGF of the model:

θ(L)zt = φn(L)θs(L)at .

comp <- filtering(x=y, mod=fit,

trend=list(ar=p$trend, ma=cd$trend$coef, sigma2=cd$trend$sigma2),

transitory=list(ar=p$trans, ma=cd$trans$coef, sigma2=cd$trans$sigma2),

seasonal=list(ar=p$seas, ma=cd$seas$coef, sigma2=cd$seas$sigma2),

irregular.sigma2=cd$irregular.sigma2)

30



#plot(comp, select = c("observed", "trend", "irregular"),

# overlap.trend = TRUE, args.trend = list(col="red"))

Figure 6: Filtered components

−2

0

2

4

6   observed and trend

−0.2

−0.1

0.0

0.1

0.2

0.3  irregular

0 50 100 150 200

time

4.4 Three components

Generate data and fit model:

set.seed(123)

y <- arima.sim(n=200, model=list(order=c(1,1,0), ar=c(0.6)))[-1]

y <- diffinv(y, lag=4)[-seq_len(4)]

y <- round(ts(y, frequency=4), 2)

fit <- arima(y, order=c(1,1,1), seasonal=list(order=c(0,1,0)))

c(coef(fit), sigma2 = fit$sigma2)

ar1 ma1 sigma2

0.52252573 0.01226773 0.87379835

Fitted model:

(−0.523)(1− L)(1− L4)yt = (1 + 0.012L)εt , σ2ε = 0.874 .

Roots allocation

p <- roots.allocation(fit, min.modulus = 0.6)

print(p, units="pi")

Roots of AR polynomial

----------------------

(1 - 0.523L)(1 - L)(1 - L^4) = (1 - 2L + L^2)(1 - 0.523L)(1 + L + L^2 + L^3)

31



Component Root Modulus Argument Period Cycles.per.Year

1 trend 1.0000+0i 1.0000 0 Inf 0

2 trend 1.0000+0i 1.0000 0 Inf 0

3 transitory 0.5225+0i 0.5225 0 Inf 0

4 seasonal 0.0000+1i 1.0000 pi/2 4.000 1

5 seasonal -1.0000+0i 1.0000 pi 2.000 2

6 seasonal 0.0000-1i 1.0000 3pi/2 1.333 3

Figure 7: Allocation of roots in the three components model

pi/2

π

3pi/2

0

−1.0

−0.5

0.0

0.5

1.0

Pseudo-spectrum After some operations, we arrive to the following expression for the pseudo-

spectrum (in the variable x = 2 cos(ω)).

Polynomial division is not required.

Pseudo-spectrum (reference relationship):

1 + 0.012x

10.184x2 − 9.272x3 − 0.456x4 + 2.318x5 − 0.523x6
=

A(x)

4− 4x+ x2
+

B(x)

1.273− 0.523x
+

C(x)

2x2 + x3
.

Partial fraction decomposition The numerators of the partial fractions are obtained here.

Actually, they are already returned by pseudo.spectrum, which calls partial.fraction. Here,

we show this stage in more detail.

pfd <- partial.fraction(psp$total.numerator, psp$den$trend,

psp$den$trans, psp$den$seas)

print(pfd$num.trend)

32



[1] -0.3112149 0.2960636

print(pfd$num.seasonal)

[1] 0.19641093 0.27943838 0.09719257

Set A(x) = a0 + a1x, B(x) = b0 and C(x) = c0 + c1x+ c2x
2 and multiply the denominator of the

LHS (products of the denominators in the RHS) by each term in the RHS.

1 + 0.012x = (2.546x2 + 0.228x3 − 0.523x4)A(x) + (8x2 − 4x3 − 2x4 + x5)B(x)

+ (5.092− 7.182x+ 3.363x2 − 0.523x3)C(x) .

Equating the coefficients related to elements of the same order in both sides of the equation yields

the following system of equations:

0 0 0 5.092 0 0

0 0 0 −7.182 5.092 0

2.546 0 8 3.363 −7.182 5.092

0.228 2.546 −4 −0.523 3.363 −7.182

−0.523 0.228 −2 0 −0.523 3.363

0 −0.523 1 0 0 −0.523


×



a0

a1

b0

c0

c1

c2


=



1

0.012

0

0

0

0


.

Solving the system gives the coefficients of polynomials in the numerators of the partial fractions:

A(x) = −0.311 + 0.296x ,

B(x) = 0.205 ,

C(x) = 0.196 + 0.279x+ 0.097x2 .

Canonical decomposition

cd <- canonical.decomposition(pfd$num.trend, psp$den$trend,

pfd$num.trans, psp$den$trans,

pfd$num.seas, psp$den$seas, psp$quotient)

cd

MA polynomials

--------------

Trend:

(1 - 0.102L + L^2)a_t, a_t ~ IID(0, 0.078)

Transitory:

(1 + L)b_t, b_t ~ IID(0, 0.0463)

Seasonal:

(1 + 1.488L + 1.059L^2 + 0.041L^3)c_t, c_t ~ IID(0, 0.0936)

Variances

---------

trend transitory seasonal irregular

33



0.078008 0.046321 0.093610 0.006808

Roots

-----

Component Root Modulus Argument Period

1 trend 0.05118+0.9987i 1.00000 1.520 4.135

2 trend 0.05117-0.9987i 1.00000 4.764 1.319

3 transitory -0.99998+0.0061i 1.00000 3.135 2.004

4 seasonal -0.72364+0.6902i 1.00000 2.380 2.640

5 seasonal -0.04091+0.0000i 0.04091 3.142 2.000

6 seasonal -0.72365-0.6902i 1.00000 3.903 1.610

Models for the components. The denominators (AR) of the corresponding ARMA models are those

obtained in the allocation of the AR roots; the numerators (MA) are those polynomials obtained

in the canonical decomposition.

Trend: (1− 2L+ L2)Tt = (1− 0.102L+ L2)at , σ2a = 0.078 .

Transitory: (1− 0.523L)Ct = (1 + L)bt , σ2b = 0.046 .

Seasonal: (1 + L+ L2 + L3)St =

(1 + 1.488L+ 1.059L2 + 0.041L3)ct , σ2c = 0.094 .

4.5 Economic cycle

Clark (1987) decomposed the real Gross Domestic Product (GDP) into a stochastic trend and

a transitory component, where the latter captures a signal that resembles the economic cycle.

Here, we will get an approximation to the economic cycle by means of an ARIMA(1,1,0) with a

deterministic drift. The model is fitted as follows:

y <- log(gdp4795)

fit1 <- arima(y, order=c(1,1,0), xreg=cbind(drift=seq_along(y)))

fit1

Call:

arima(x = y, order = c(1, 1, 0), xreg = cbind(drift = seq_along(y)))

Coefficients:

ar1 drift

0.3673 0.0077

s.e. 0.0665 0.0010

sigma^2 estimated as 8.394e-05: log likelihood = 635.04, aic = -1264.08

The root if the differencing filter is assigned to the trend, while the root if the stationary AR

polynomial is assigned to the transitory (due to a low modulus):

34



p1 <- roots.allocation(fit1)

p1

Roots of AR polynomial

----------------------

(1 - 0.367L)(1 - L) = (1 - L)(1 - 0.367L)

Component Root Modulus Argument Period Cycles.per.Year

1 trend 1.0000+0i 1.0000 0 Inf 0

2 transitory 0.3673+0i 0.3673 0 Inf 0

The canonical decomposition of this model is not admissible since it leads to a negative variance

in the irregular component. In particular, the amount of noise that is extracted from the trend to

be assigned to the irregular is large and negative (is not compensated with transitory):

psp <- pseudo.spectrum(fit1, p1)

fobj <- function(x, p1, p2) polyeval(p1, x) / polyeval(p2, x)

tmp <- optimize(f=fobj, interval=c(-2, 2),

p1=psp$num$trend, p2=psp$den$trend)

print(tmp)

$minimum

[1] -1.999959

$objective

[1] 0.6245433

trend.minval <- tmp$obj

trans.minval <- optimize(f=fobj, interval=c(-2, 2),

p1=psp$num$trans, p2=psp$den$trans)$obj

irregular.sigma2 <- psp$quotient + trend.minval + trans.minval

print(irregular.sigma2)

[1] -1.667617

The alternative that we adopt here is to fit an AR(1) model with mean for the differenced series.

The model is exactly the same as the model fitted above (the first differences of drift=seq along(y)

become a constant).

fit2 <- arima(diff(y), order=c(1,0,0), include.mean=TRUE)

fit2

Call:

arima(x = diff(y), order = c(1, 0, 0), include.mean = TRUE)

Coefficients:

ar1 intercept

0.3673 0.0077

35



s.e. 0.0665 0.0010

sigma^2 estimated as 8.394e-05: log likelihood = 635.04, aic = -1264.08

With this formulation of the model, the unit root of the differencing filter is not considered and

the decomposition is now admissible.

p2 <- roots.allocation(fit2)

print(p2, units="pi")

Roots of AR polynomial

----------------------

(1 - 0.367L) = (1 - 0.367L)

Component Root Modulus Argument Period Cycles.per.Year

1 transitory 0.3673+0i 0.3673 0 Inf 0

psp <- pseudo.spectrum(fit2, p2)

pfd <- partial.fraction(psp$total.numerator, psp$den$trend,

psp$den$trans, psp$den$seas)

cd <- canonical.decomposition(pfd$num.trend, psp$den$trend,

pfd$num.trans, psp$den$trans,

pfd$num.seas, psp$den$seas, psp$quotient)

cd

MA polynomials

--------------

Transitory:

(1 + L)b_t, b_t ~ IID(0, 0.1965)

Variances

---------

transitory irregular

0.1965 0.5349

Roots

-----

Component Root Modulus Argument Period

1 transitory -1+0.0079i 1 3.134 2.005

Before filtering the data for obtaining the estimate of the cycle, we must be aware that the

mean in the differenced series is actually a linear trend in the original series. The linear trend is

first removed as follows.

linear.trend <- coef(fit2)["intercept"]*seq_along(y)

y2 <- y - linear.trend

36



The estimate of the component will be a smoothed version of the detrended series, y2. Before

applying the filter, we extend the series with forecasts:

extend <- 16

fitaux <- arima(y2, order=c(1,1,0),

include.mean=FALSE, fixed=coef(fit2)[1])

pred.right <- predict(fitaux, n.ahead=extend, se.fit=FALSE)

revy2 <- ts(rev(y2))

tsp(revy2) <- tsp(y2)

fitaux <- arima(revy2, order=c(1,1,0), include.mean=FALSE)

pred.left <- predict(fitaux, n.ahead=extend, se.fit=FALSE)

yext <- ts(c(rev(pred.left), y2, pred.right),

frequency=frequency(y), start=time(y)[1]-extend/frequency(y))

Now the cycle (transitory component) can be estimated:

n <- length(yext)

nm1x2 <- 2*(n-1)

wtrans <- ARMAacov(ma=cd$transitory$coef[-1], lag.max=n-1,

sigma2=cd$transitory$sigma2)

trans <- ts(filter(c(rep(0, n-1), yext, rep(0, n-1)),

filter=c(rev(wtrans[-1]), wtrans), method="conv", sides=1)[-seq_len(nm1x2)])

tsp(trans) <- tsp(yext)

trans <- window(trans, start=start(y), end=end(y))

#plot(trans)

Despite the unit root related to the differencing filter has not been assigned to any component,

the original series is recovered from this decomposition. It can be checked below, where the linear

trend and the irregular component added up to the transitory component obtained above:

fres <- filtering(x=y, mod=fit2, drift=TRUE,

transitory=list(ar=p2$trans, ma=cd$trans$coef, sigma2=cd$trans$sigma2),

irregular.sigma2=cd$irregular.sigma2, extend=16)

print(all.equal(trans, fres$comp[,"transitory"]))

[1] TRUE

tmp <- rowSums(fres$comp[,c("trend", "transitory", "irregular")])

print(all.equal(tmp, c(y)))

[1] "Mean relative difference: 1.109554e-05"

The estimated economic cycle obtained by means of Clark’s model and the ARIMA(1,1,0) with

drift discussed here is shown in Figure 8 (recession periods dated by the NBER are shaded in gray.)

4.6 UK consumption

Fit model to the logarithms of the UK consumption and detect possible outliers:

37



Figure 8: Estimated cyclical component

Trend−cycle model

1950 1960 1970 1980 1990

−0.04

−0.02

0

0.02

ARIMA(1,1,0) with drift

1950 1960 1970 1980 1990

−0.08

−0.05

−0.02

0.01

0.04

0.07

require("tsoutliers")

y <- log(UKconsumption)

fitxreg <- tso(y, cval=3.8, tsmethod="arima", args.tsmethod=list(order=c(1,0,0),

seasonal=list(order=c(0,1,1)), xreg=cbind(drift=seq_along(y))))

fitxreg$fit$call <- NULL

fit <- fitxreg$fit

fitxreg

Loading required package: tsoutliers

Call:

structure(list(method = NULL), .Names = "method")

Coefficients:

ar1 sma1 drift AO53 TC73 AO98

0.8807 -0.3787 0.0061 0.0403 0.0447 0.0543

s.e. 0.0386 0.0806 0.0012 0.0076 0.0096 0.0076

sigma^2 estimated as 0.0001466: log likelihood = 466.39, aic = -918.79

Outliers:

type ind time coefhat tstat

1 AO 53 1968:01 0.04028 5.334

2 TC 73 1973:01 0.04474 4.639

3 AO 98 1979:02 0.05428 7.097

dec <- ARIMAdec(y, fit, drift=TRUE, extend=16)

dec$ar

Roots of AR polynomial

----------------------

(1 - 0.881L)(1 - L^4) = (1 - 1.881L + 0.881L^2)(1 + L + L^2 + L^3)

38



Component Root Modulus Argument Period Cycles.per.Year

1 trend 1.0000+0i 1.0000 0.000 Inf 0

2 trend 0.8807+0i 0.8807 0.000 Inf 0

3 seasonal 0.0000+1i 1.0000 1.571 4.000 1

4 seasonal -1.0000+0i 1.0000 3.142 2.000 2

5 seasonal 0.0000-1i 1.0000 4.712 1.333 3

dec$ma

MA polynomials

--------------

Trend:

(1 + 0.214L - 0.786L^2)a_t, a_t ~ IID(0, 0.1314)

Seasonal:

(1 + 0.989L + 0.327L^2 - 0.463L^3)c_t, c_t ~ IID(0, 0.0424)

Variances

---------

trend seasonal irregular

0.13135 0.04245 0.13684

Roots

-----

Component Root Modulus Argument Period

1 trend 0.7857-0.0000i 0.7857 0.000 Inf

2 trend -1.0000+0.0000i 1.0000 3.142 2.000

3 seasonal 0.4632+0.0000i 0.4632 0.000 Inf

4 seasonal -0.7260+0.6877i 1.0000 2.383 2.636

5 seasonal -0.7260-0.6877i 1.0000 3.900 1.611

A Change of variable in the ACGF

Setting z = e−iω in the expression of the Autocovariance generating function given in equation (4)

yields the theoretical spectrum of an ARMA process. As mentioned above, the resulting equation

of the ACGF is not a polynomial since zj + z−j = 2 cos(ωj) (for z = e−iw, which has unit modulus,

the inverse 1/z is the complex-conjugate of z) and, hence, the variable varies with the order j.

Here, I give some details about the change of variable that is applied in order to express the ACGF

as a standard polynomial.

Remember that the product of cosines is performed as follows:

cos(a) cos(b) =
1

2
(cos(a+ b) + cos(a− b)) .

39



Figure 9: Decomposition of the UK consumption time series (logs)

UK consumption (logs)

1955 1960 1965 1970 1975 1980 1985 1990 1995

10.4

10.6

10.8

11

11.2

11.4

Outliers effects

1955 1960 1965 1970 1975 1980 1985 1990 1995

0

0.01

0.02

0.03

0.04

0.05

Observed minus linear trend and estimated cycle

1955 1960 1965 1970 1975 1980 1985 1990 1995

10.35

10.4

10.45

10.5

10.55

Seasonal component

1955 1960 1965 1970 1975 1980 1985 1990 1995

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

The so-called double-angle formula can be obtained form the product of cosines, taken a = b = ω:

cos(ω) cos(ω) =
1

2
(cos(2ω) + cos(0)) =

1

2
(cos(2ω) + 1)

2 cos2(ω) = cos(2ω) + 1 .

Multiplying this expression by 2, we will use the following result:

2 cos(2ω) = (2 cos(ω))2 − 2 .

Next, I will show the transformation that is pursued for different orders of j. Then we will be

able to generalize it for any order.

Polynomial of order 2: The goal is to transform the expression:

A(2 cos(jω)) = a0 + a12 cos(ω) + a22 cos(2w)

into the polynomial:

B(2 cos(ω)) = b0 + b12 cos(ω) + b2(2 cos(ω))2 .

As they are equivalent, we have B(·) = A(·):

b0 + b12 cos(ω) + b2(2 cos(ω))2 = a0 + a12 cos(ω) + a2 2 cos(2w)︸ ︷︷ ︸
(2 cos(ω))2−2

b0 + b12 cos(ω) + b2(2 cos(ω))2 = (a0 − 2a2) + a12 cos(ω) + a2(2 cos(ω))2
.

40



Equating the coefficients related to the same terms gives the mapping of the coefficents from the

original polynomial A(·) to the polynomial B(·) in the variable 2 cos(ω) :

b0 = a0 − 2a2 ; b1 = a1 ; b2 = a2 .

Polynomial of order 3: Let’s denote x = 2 cos(ω), for short. Transform the expression:

A(·) = a0 + a12 cos(ω) + a22 cos(2w) + +a32 cos(3w)

into the polynomial in the variable x = 2 cos(ω):

B(x) = b0 + b1x+ b2x
2 + b3x

3 .

As done before, upon the double-angle formula, we can write 2 cos(2w) in terms of x = 2 cos(ω):

2 cos(2w) = x2 − 2. Working upon the expression of cos(a) cos(b), we choose a and b so that cos(3w)

shows up on it and then solve for it and multiply the final expression by 2. Taking a = 2w and

b = w:

cos(2w) cos(ω) =
1

2
(cos(3w) + cos(ω))(

2 cos2(w)− 1
)

cos(ω) =
1

2
(cos(3w) + cos(ω))

2 cos3(w)− cos(ω) =
1

2
(cos(3w) + cos(ω))

cos(3w) = 4 cos3(w)− 3 cos(ω) .

Multiplying the expression above by 2 and substituting x = 2 cos(ω), we arrive to the same result:

2 cos(3w) = x3 − 3x .

Equating B(x) = A(·):

b0 + b1x+ b2x
2 + b3x

3 = a0 + a1 2 cos(ω)︸ ︷︷ ︸
x

+a2 2 cos(2w)︸ ︷︷ ︸
x2−2

+a3 2 cos(3w)︸ ︷︷ ︸
x3−3x

b0 + b1x+ b2x
2 + b3x

3 = (a0 − 2a2) + (a1 − 3a3)x+ a2x
2 + a3x

3

b0 = a0 − 2a2 ; b1 = a1 − 3a3 ; b2 = a2 ; b3 = a3 .

Polynomial of order 4: Set a = 3w and b = w in cos(a) cos(b):

cos(3w) cos(ω) =
1

2
(cos(4w) + cos(2w))

(4 cos3(w)− 3 cos(ω)) cos(ω) =
1

2
(cos(4w) + cos(2w))

8 cos4(w)− 6 cos2(w) = cos(4w) + 2 cos2(w)− 1

cos(4w) = 8 cos4(w)− 8 cos2(w) + 1 .

Multiplying by 2 and replacing x = 2 cos(ω):

2 cos(4w) = x4 − 4x2 + 2 .

41



Equating B(x) = A(·) and solving fot bi:

b0 + b1x+ b2x
2 + b3x

3 + b4x
4 = a0 + a1 2 cos(ω)︸ ︷︷ ︸

x

+a2 2 cos(2w)︸ ︷︷ ︸
x2−2

+a3 2 cos(3w)︸ ︷︷ ︸
x3−3x

+a4 2 cos(4w)︸ ︷︷ ︸
x4−4x2+2

b0 = a0 − 2a2 + 2a4 ; b1 = a1 − 3a3 ; b2 = a2 − 4a4 ; b3 = a3 ; b4 = a4 .

Polynomial of order 5: Set a = 4w and b = w in cos(a) cos(b):

cos(4w) cos(ω) =
1

2
(cos(5w) + cos(3w))

(8 cos4(w)− 8 cos2(w) + 1) cos(ω) =
1

2
(cos(5w) + cos(3w))

16 cos5(w)− 16 cos3(w) + 2 cos(ω) = cos(5w) + 4 cos3(w)− 3 cos(ω)

cos(5w) = 16 cos5(w)− 20 cos3(w) + 5 cos(ω)

Multiplying by 2 and replacing x = 2 cos(ω):

2 cos(5w) = x5 − 5x3 + 5x .

Equating B(x) = A(·) and solving fot bi:

b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 = a0 + a1 2 cos(ω)︸ ︷︷ ︸
x

+a2 2 cos(2w)︸ ︷︷ ︸
x2−2

+a3 2 cos(3w)︸ ︷︷ ︸
x3−3x

+ a4 2 cos(4w)︸ ︷︷ ︸
x4−4x2+2

+a5 2 cos(5w)︸ ︷︷ ︸
x5−5x3+5x

b0 = a0 − 2a2 + 2a4 ; b1 = a1 − 3a3 + 5a5 ; b2 = a2 − 4a4 ;

b3 = a3 − 5a5 ; b4 = a4 ; b5 = a5 .

The following table summarizes the mappings from the coefficients in A(·) to those in B(·) that

we found so far:

degree

1 2 3 4 5

b0 = a0 a0 − 2a2 a0 − 2a2 a0 − 2a2 + 2a4 a0 − 2a2 + 2a4

b1 = − a1 a1 − 3a3 a1 − 3a3 a1 − 3a3 + 5a5

b2 = − a2 a2 a2 − 4a4 a2 − 4a4

b3 = − − a3 a3 a3 − 5a5

b4 = − − − a4 a4

b5 = − − − − a5

42



This generalizes as follows:

b0 = a0 − 2a2 + 2a4 − 2a6 + 2a8 + · · ·

b1 = a1 − 3a3 + 5a5 − 7a7 + 9a9 + · · ·

b2 = a2 − 4a4 + 9a6 − 16a8 + · · ·

b3 = a3 − 5a5 + 14a7 − 30a9 + · · ·

b4 = a4 − 6a6 + 20a8 + · · ·

b5 = a5 − 7a7 + 27a9 + · · ·

b6 = a6 − 8a8 + · · ·

b7 = a7 − 9a9 + · · ·

b8 = a8 + · · ·

b9 = a9 + · · ·

The following product gives the coefficients of the pursued polynomial in the the variable x =

2 cosω: 

1 0 −2 0 2 0 −2 0 2 0

0 1 0 −3 0 5 0 −7 0 9

0 0 1 0 −4 0 9 0 −16 0

0 0 0 1 0 −5 0 14 0 30

0 0 0 0 1 0 −6 0 20 0

0 0 0 0 0 1 0 −7 0 27

0 0 0 0 0 0 1 0 −8 0

0 0 0 0 0 0 0 1 0 −9

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



×



a0

a1

a2

a3

a4

a5

a6

a7

a8

a9



=



b0

b1

b2

b3

b4

b5

b6

b7

b8

b9



.

References

Box GEP, Hillmer SC, Tiao GC (1978). “Analysis and Modeling of Seasonal Time Series.” In A Zell-

ner (ed.), Seasonal Analysis of Economic Time Series, pp. 309–334. U.S. Dept. of Commerce -

Bureau of the Census, Washington, D.C. URL http://www.nber.org/chapters/c3904.pdf.

Burman JP (1980). “Seasonal Adjustment by Signal Extraction.” Journal of the Royal Statistical

Society. Series A (General), 143(3), 321–337. doi:10.2307/2982132.

Clark PK (1987). “The Cyclical Component of U.S. Economic Activity.” The Quarterly Journal

of Economics, 102(4), 797–814. doi:10.2307/1884282.

Gómez V (2015). “SSMMATLAB: A Set of MATLAB Programs for the Statistical Analysis

of State Space Models.” Journal of Statistical Software, 66(1), 1–37. ISSN 1548-7660.

doi:10.18637/jss.v066.i09.

43

http://www.nber.org/chapters/c3904.pdf
https://doi.org/10.2307/2982132
https://doi.org/10.2307/1884282
https://doi.org/10.18637/jss.v066.i09


Gómez V, Maravall A (2001a). “Programs TRAMO and SEATS. Instructions for

the User (Beta Version: June 1997).” Technical Report SGAPE-97001, Ministe-

rio de Economı́a y Hacienda. Dirección General de Análisis y Programación Pre-

supuestaria. URL http://www.bde.es/f/webbde/SES/servicio/Programas_estadisticos_

y_econometricos/Programas/ficheros/manualdos.pdf.

Gómez V, Maravall A (2001b). “Seasonal Adjustment and Signal Extraction in Economic Time

Series.” In D Peña, GC Tiao, RS Tsay (eds.), A Course in Time Series Analysis, chapter 8.

John Wiley & Sons, Inc. doi:10.1002/9781118032978.ch8.

Hillmer SC, Tiao GC (1982). “An ARIMA-Model-Based Approach to Seasonal

Adjustment.” Journal of the American Statistical Association, 77(377), 63–70.

doi:10.1080/01621459.1982.10477767.

Maravall A, Pierce DA (1987). “A Prototypical Seasonal Adjustment Model.” Journal of Time

Series Analysis, 8(2), 177–193. ISSN 1467-9892. doi:10.1111/j.1467-9892.1987.tb00431.x.

Planas C (1997). Applied Time Series Analysis: Modelling, Forecasting, Unobserved Components

Analysis and the Wiener-Kolmogorov Filter. Eurostat: Series E, Methods. Office for Official

Publications of the European Communities. ISBN 9789282815724. URL https://bookshop.

europa.eu/en/applied-time-series-analysis-pbCA0897484/.

Pollock DSG (1999). A Handbook of Time-Series Analysis Signal Processing and Dynamics. Aca-

demic Press, London. ISBN 0-12-560990-6. doi:10.1016/B978-012560990-6/50002-6.

R Development Core Team (2016). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

44

http://www.bde.es/f/webbde/SES/servicio/Programas_estadisticos_y_econometricos/Programas/ficheros/manualdos.pdf
http://www.bde.es/f/webbde/SES/servicio/Programas_estadisticos_y_econometricos/Programas/ficheros/manualdos.pdf
https://doi.org/10.1002/9781118032978.ch8
https://doi.org/10.1080/01621459.1982.10477767
https://doi.org/10.1111/j.1467-9892.1987.tb00431.x
https://bookshop.europa.eu/en/applied-time-series-analysis-pbCA0897484/
https://bookshop.europa.eu/en/applied-time-series-analysis-pbCA0897484/
https://doi.org/10.1016/B978-012560990-6/50002-6
https://www.R-project.org/

	Introduction
	Notation and concepts
	ARIMA process
	Theoretical functions of an ARMA process
	Change of variable in the pseudo-spectrum

	ARIMA-model-based decomposition
	Fit an ARIMA model to the observed data
	Allocate the roots of the AR polynomial
	Pseudo-spectrum
	Partial fraction decomposition
	Canonical decomposition
	Recovery of MA coefficients
	Filtering
	Theoretical component, estimator and empirical signal

	Examples
	Seasonal autoregressive model
	The Airlines model and data
	Polynomial division and transitory component
	Three components
	Economic cycle
	UK consumption

	Change of variable in the ACGF

