
bsm.airp Reference Guide

Javier López-de-Lacalle

January 25, 2013

Abstract

This is a reference guide to the package bsm.airp that complements the help files of the

package. In this guide we describe the process that replicates the results shown in the paper

101 variations on a maximum likelihood procedure for a structural time series model.

Contents

1 Introduction 1

2 Naming convention 1

3 Scripts 3

4 Tests 9

5 Results reported in the paper 10

1 Introduction

The package bsm.airp replicates the results shown in the paper 101 variations on a maximum

likelihood procedure for a structural time series model. In this document we will sketch the process

necessary to run all the variations discussed in the paper.

Two structural models are considered: the basic structural model (BSM) and the local level

plus seasonal component model (LLS). See Section 2 of the reference paper for a brief description

of these models and to check the notation used in this document.

2 Naming convention

Given a model, a variation on the procedure to obtain maximum likelihood parameter estimates

is characterized by six issues that are split in two levels (for convenience to run the computations

and store the results):

1

1. Restrictions on the parameters (if any) and number of steps of the procedure.

2. Kalman filter interface, optimization procedure for the standard or the concentrated likelihood

function, parameterization of the model and structure of the covariance matrix of the initial

state vector.

The combination of different choices leads to several variations on the maximum likelihood pro-

cedure. The results are stored in a comma-separated values (csv) file containing the output from

each variation by rows. The model and the choices in the first level of options determine the name

of the csv file, while the choices in the second level are used to label each variation within the csv

file.

The following labels are used respectively for each option:

1. Restrictions: some of the variance parameters may be fixed to zero.

r0: no restrictions.

r1: the variances of the disturbance term in the observation equation and in the drift term

of the trend are set equal to zero (σ2ε = σ2ζ = 0).

r2: the variance of the drift is set equal to zero (σ2ζ = 0).

2. Number of steps of the procedure.

s1: one step procedure. The variance parameters are estimated given an initial state vector,

a0, that is determined beforehand (the first observation of the series and zeros for the

remaining elements).

s2: two steps procedure. Given the variance parameter estimates obtained in the previous

step, the vector a0 is estimated.

s3: three steps procedure. Refinement of the variance parameter estimates. Given the es-

timate of a0 obtained in the previous step, the variance parameters are reestimated

starting from the estimates obtained in the first step.

3. Kalman filter interface. The following interfaces are considered to evaluate the log-likelihood

function:1 dse,2 dlm, FKF, KFAS, KFAS.d, sspir, stsm and StructTS. These labels are the

name of the packages the interfaces belong to, except for StructTS (it is part of the stats

package) and KFAS.d (it refers to the diffuse version of the filter implemented in the package

KFAS).

4. Optimization algorithm and concentration of a parameter.

1The package stsm evaluates also the concentrated log-likelihood function.
2This interface is not included in the results of the paper as it evaluates a large sample approximation of the

likelihood function that is not comparable in the application presented in the paper.

2

uo0: unconstrained optimization (BFGS algorithm available in the function optim in package

stats).

co0: constrained optimization (L-BFGS-B algorithm available in the function optim in pack-

age stats).

ab0: adapted barrier to enforce the constraints (non-negative variance parameters) and Nelder-

Mead optimization algorithm (available in the function constrOptim in package stats).

If a parameter is concentrated out of the likelihood function the 0 is replaced by 1. By default,

the parameter that is concentrated is σ2ε (variance of the disturbance in the observation

equation) in the unrestricted model and σ2ξ (variance of the level) in the restricted models.

5. Parameterization.

0: standard parameterization in terms of variance parameters.

1: regularization. The variance parameters are multiplied by the variance of the data divided

by one hundred.

2: the variance parameters are the square of the parameters θ that will be actually estimated

by maximum likelihood, σ2 = θ2.

3: the variance parameters are the exponential of the parameters θ that will be actually

estimated by maximum likelihood, σ2 = exp(θ).

6. Covariance matrix of the initial state vector.

0: the covariance matrix of the initial state vector is diagonal. It takes on a large value to

reflect the uncertainty in a0 (by default 10 000 times the variance of the data).

1: the initial covariance matrix is non-diagonal (the elements outside the diagonal take on

the same value as the diagonal).

The name for the variation is then given by concatenating with dashes the labels for each choices in

the order given above. For example, the name r0-s1-StructS-co0-1-1 is referred to the process

implemented in StructTS from the core package stats. It stands for an unresticted model, one

step procedure, the StructTS Kalman filter interface is used along with constrained optimization

without concentrating a parameter, the parameters are regularized by a factor and the covariance

matrix of the initial state vector is non-diagonal.

3 Scripts

The directory bsm.airp/inst/scripts of the source file of the package contains the scripts that replicate

the results of the paper. In this section we will briefly describe the structure and usage of those

scripts.

3

The first step is to load the package and define some parameters to select the computations and

how the results are stored. Then, the data and the model are defined.

> library("bsm.airp")

> .path.results <- file.path(getwd(), "results")

> .save.rda <- FALSE

> .fvar <- 10000

> .y <- log(AirPassengers)

> .mtype <- "BSM"

The results will be stored in the folder results within the current directory. The objects created

during the computations related to a single variation can be saved as an rda file. Here we do not

use that option. The variance parameters will be saved multiplied by the factor .fvar.

The combination of the options introduced in Section 2 leads to several variations. Running

the maximum likelihood procedure for a variation requires setting by hand the value of the choices

characterizing the variation. Since it is cumbersome for all the cases discussed in the paper, the

computations are carried out through a loop around a set of options that are succinctly selected as

shown below.

> .restricted <- 0

> .steps <- 1

> .KF.version <- c("StructTS")

> .proc <- c("co", "ab")

> .transP <- c("0", "1")

> .P0cov <- c(TRUE, FALSE)

> .clik <- FALSE

The scripts will loop around all the objects defined above, which can be of any length. We have

selected the variations that use an unrestricted model along with a one step procedure, using the

StructTS Kalman filter interface. Constrained optimization is selected by means of the L-BFGS-B

("co" and AB-NM algorithms ("ab" Two different parameterizations are considered in .transP

according to the notation introduced in Section 2 (standard and regularization). The model will be

fit for both a diagonal and a non-diagonal initial covariance matrix. Concentration of a parameter

will not be considered in this set of variations. The combination of all these settings leads to

1 × 1 × 1 × 2 × 2 × 2 × 1 = 8 variations.

The objects above are defined as hidden objects (their names start with a dot). Once the

computations related to a variation are finished, the workspace is cleaned for safety. Only hidden

objects, which are necessary throughout the entire process, are kept in the workspace over all

iterations.

The settings chosen above can be specified through the file params.R in the same directory as

the other scripts.

4

After selecting the options the main script can be run. The script main.R takes care of all the

exercise: preparing the data, fitting the models according to the selected variations, performing

some diagnostics tests and storing the results.

> source("main.R")

Here is an abridged version of the main script.

> source("params.R")

> for (.kfv in .KF.version)

+ {

+ rm(list = ls(all = FALSE))

+ for (.pr in .proc)

+ {

+ for (.tp in .transP)

+ {

+ if (.tp == "0")

+ .tp <- NULL

+ for (.p0 in .P0cov)

+ {

+ # build the model

+ pnc <- define.allpars(.restricted, .clik, .mtype)

+ m0 <- stsm.model(model = .mtype, y = .y,

+ pars = pnc$pars, cpar = pnc$cpar, nopars = pnc$nopars,

+ lower = NULL, upper = NULL, transPars = .tp,

+ ssd = FALSE, sgfc = FALSE)

+ KF.args <- list(P0cov = .p0)

+

+ # fit the model

+ source("step1.R")

+ if (.steps > 1)

+ {

+ source("step2.R")

+ if (.steps == 3)

+ {

+ source("step3.R")

+ }

+ }

+

+ # compute smoothed components and diagnostic tests

5

+ source("diagnostics.R")

+ }

+ }

+ }

+ }

The main script consists of nested loops. Given the selected model, the restrictions (if any) and

the number of steps of the procedure, the loops go through all the combinations based on the re-

maining choices: .kfv, Kalman filter interface; .pr, optimization procedure; .tp, parameterization

and .p0, initial covariance matrix of the state vector.

The computations are carried out within the innermost loop. First, the model is built passing

to the function stsm.model in package stsm.class the arguments that define the current variaton.

Then, depending on the selected number of steps, the scripts containing the code to fit the model

are called. Then, the smoothed components are computed for the obtained solution, as well as

some diagnostic tests (see original script diagnostics.R): significance of lags of order 1 and 12 in the

smoothed components and in the standardized residuals, significance of seasonal dummies in the

estimated trend and residuals and homoscdasticity of the smoothed seasonal component.

The models are fit by means of the function maxlik.td.optim in package stsm. For example,

in the step one procedure, the model is fit as follows.

> optmethod <- switch(.pr, "co" = "L-BFGS-B", "uo" = "BFGS", "ab" = "AB-NM")

> fita <- try(maxlik.td.optim(m = m0,

+ KF.version = .kfv, KF.args = KF.args,

+ method = optmethod, gr = "numerical", hessian = FALSE),

+ silent = TRUE)

The results are stored in matrix form. The variance parameter estimates and the value of the

log-likelihood function for the selections done above are the following.

> id <- c("var1", "var2", "var3", "var4", "loglik")

> tab <- .tab.out[order(rownames(.tab.out)),id]

> print(round(tab, 3))

var1 var2 var3 var4 loglik

StructTS-ab0-0-0 1.219 7.044 0 0.658 168.181

StructTS-ab0-0-1 0.000 7.567 0 14.070 162.706

StructTS-ab0-1-0 1.270 6.977 0 0.650 168.183

StructTS-ab0-1-1 0.000 7.695 0 13.999 162.709

StructTS-co0-0-0 0.000 14.921 0 0.000 159.347

StructTS-co0-0-1 0.000 12.368 0 15.510 160.496

StructTS-co0-1-0 1.295 6.994 0 0.642 168.183

StructTS-co0-1-1 0.000 7.718 0 13.969 162.709

6

Although not shown above, the main script stores the results in a csv file and reports the name

of the output file on the screen.

> cat(paste("The results are stored in:\n",

+ paste(.file.out, ".csv", sep = ""), "\n"))

The results are stored in:

BSM-restricted-0-steps-1.csv

Before storing the results it is checked whether a previous file with the same name exists in

the results directory. If such file exists, the results for the new variations are added to that file

ensuring that the results from previous variations are not overwritten. This is convenient since

we may not want to run all the possible variations (for a model, restrictions and number of steps)

in the same run. In addition, if during the computations the function check.gonext (not shown

above, see original main file) detects that the results for the current variation are already available

in the output file modified in a previous run, then it is skipped. This is also convenient, especially

as the number of variations grow, since it helps us to make sure that the computations are done

just once.

When the number of variations is relatively large, it is helpful to show the results clustered by

groups of variations with common characteristics. For example, below the results are split into

groups that share the same value for the options in the first, second and forth positions, (ord =

c(1, 2, 4)), of the row names in the table of results that was printed before. The positions are

separated by dashes and follow the same order in which the options were enumerated in Section 2

(starting from the third one, the Kalman filter interface, since the restrictions and the number

of steps is common for all the variations selected here). Thus, passing ord = c(1, 2, 4) to

tab.split split the results into groups that use the same Kalman filter interface, optimization

algorithm as well as the same structure of the initial covariance matrix.

> tabs <- tab.split(tab, ord = c(1, 2, 4))

> for (i in seq(along = tabs))

+ print(round(tabs[[i]], 3))

var1 var2 var3 var4 loglik

StructTS-ab0-0-0 1.219 7.044 0 0.658 168.181

StructTS-ab0-1-0 1.270 6.977 0 0.650 168.183

var1 var2 var3 var4 loglik

StructTS-ab0-0-1 0 7.567 0 14.070 162.706

StructTS-ab0-1-1 0 7.695 0 13.999 162.709

var1 var2 var3 var4 loglik

StructTS-co0-0-0 0.000 14.921 0 0.000 159.347

StructTS-co0-1-0 1.295 6.994 0 0.642 168.183

7

var1 var2 var3 var4 loglik

StructTS-co0-0-1 0 12.368 0 15.510 160.496

StructTS-co0-1-1 0 7.718 0 13.969 162.709

Comparing the results across groups, we can see that when a non-diagonal covariance matrix

for the initial state vector is used, the value of the variance in the seasonal component is relatively

larger. Within the third group of solutions as split above, we can see that using the regularization

on the parameters helps the L-BFGS-B to converge to a reliable solution when a diagonal initial

covariance matrix is used. The second variation in the last group follows the same design as the

function StructTS in the stats core package. The documentation of StructTS claims that this

solution is superior to the parameter estimates reported in other source.

The solutions within each group can be plot as a hierarchical cluster. For example, for the

whole table (not the groups in which it was split) we obtain the plot shown below. The variance

parameter estimates are taken as reference to compute the distance between each solution (hc.vars

= id[1:4]). The argument inf.val = 99 indicates that values greater than 99 are taken as infinite

(we don’t expect so large variance parameters and hence if that value arises it should be located as

far as possible from the others).

> plothc(tab, ii = 1, hc.vars = id[1:4], inf.val = 99,

+ hc.method = "average", save = FALSE)

5 4 3 2 1 0

x−co0−0−1

x−ab0−0−1

x−ab0−1−1

x−co0−1−1

x−co0−0−0

x−ab0−0−0

x−ab0−1−0

x−co0−1−0

StructTS−x−x−x

Notice that, in the plot, the labels of each item takes on an x for those elements that are common

to all the items (variations). The title of the plot reveals the value of those elements, while an x is

8

given to those elements that change across the variations. This labelling is more relevant when we

plot the cluster for a group defined in tab.split. As in this example those groups are small it is

more interesting to display the cluster for all the variations that we considered.

When there are more than one file containing the results, that is, we have run the main scritp

for different choices of the restrictions and/or number of steps (given a model BSM oor LLM),

it may be necessary to retrieve a selection of results from all the output files. The function

tab.gather.filter collects the results from all the files found in the directory of results and

filters the rows according to the directions passed through the argument include as shown below.

> tab.gather.filter(path.results = "results",

+ extra.cols = c("loglik"), expand.names = TRUE, fvar = 1,

+ include = list(res = c(0), steps = c(1, 3),

+ kf = c("dlm", "KFAS", "StructTS"),

+ opt = c("co"), trans = c(0, 1), p0 = c(0, 1)))

In this case the row names are expanded to identify the value of the restrictions and number

of steps, since they are gathered in the same table and a unique label is required. The expanded

names for output table shown above are:

[1] "r0-s1-StructTS-ab0-0-0" "r0-s3-StructTS-ab0-0-1" "r0-s1-StructTS-ab0-1-0"

[4] "r0-s3-StructTS-ab0-1-1" "r0-s1-StructTS-co0-0-0" "r0-s3-StructTS-co0-0-1"

[7] "r0-s1-StructTS-co0-1-0" "r0-s3-StructTS-co0-1-1"

In addition to the variance parameter estimates, extra variables can be retrieved (e.g. loglik,

aic, bic). See the output file generated by the main script to identify other variables by columns.

The table returned by tab.gather.filter can be split using tab.split as shown above. It

is also helpful to use the function summaryPanel. The arguments of this function are similar to

tab.split. This function creates a panel of hierarchical plots. It displays a graphical interface to

select a plot and to locate and print the results attached to a variation by doing clik on the plot

with the mouse.

> summaryPanel(tab, ord = c(4, 3, 2), hc.method = "average",

+ inf.val = 99, maxval = 1000, dec = 3, hc.vars)

4 Tests

The directory bsm.airp/inst/tests in the source file of the package contains some scripts intended

for debugging purposes. The script compare-mll-values.R compares the value of the log-likelihood

function obtained with different Kalman filter interfaces. Constant terms that are independent

of the parameters of the model are sometimes removed. This code allows us to check whether

differences between interfaces are the same, up to a constant. It is a straightforward way to see the

9

expression that is used in each case for the likelihood function (easier than reading the source code

since it is not always reported in the documentation).

The reamaining scripts contain sample code about the usage of the packages employed to run

the Kalman filter. These interfaces are wrapped in the package KFKSDS. Thus, the code of the

main script is simplified using this unified interface. The scripts in this directory are useful for

debugging.

5 Results reported in the paper

The directory bsm.airp/inst/article-tables contains the code that prints the tables and summary

results presented in the reference paper. Some of the output files follow an older labelling where a

0 or 1 is not added to the label of the optimization procedure to distinguish whether the standard

or the concentrated likelihood function was used.

10

