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Abstract

We fit an autoregressive time series model with time-varying parameters to study

changes in seasonal means of temperature data observed in Fairbanks (Alaska, USA).

Other studies have found an increase in temperature using annual or seasonal averages.

We develop a statistical model that allows us to have a further insight in this issue

using monthly data. The results show that the overall increase in temperature is driven

mainly by warmer winter months. The increase in temperature is more prominent in

winter months. A decrease in temperature is found in October.

1 Introduction

Our planet has known periods of warm and cold mean temperatures throughout its mil-

lennial history. The tendency observed in climatological variables over the last decades

indicates a more noticeable increase in temperature as well as a relatively sharper intensity

of meteorological phenomena (Webster et al., 2005; Emanuel, 2005). There are a number

of reasons that explain changes in climate variables: some of them are attached to natural

phenomena (for instance, the Pacific Decadal Oscillation) while others, such as an increase

in industrial activity, are related to anthropogenic causes.

There is a general agreement on the need for effective measures to cope with climate

change and its impact both on Earth and human life. Yet, the analysis of climatological

data is not only relevant in a long-term scenario. As weather forecasts have become more

accurate, a variety of economic and social activities rely on weather related information

for short-term decision making (Seater, 1993; Romilly, 2005).

The design of sensible economic and environmental policies requires scientific research

and advice. Polar regions are critical areas which require a closer monitoring on climate

variables. Those areas are more sensitive to changes in climate and disturbances on the

environment, e.g. ice melting, may trigger consequences at a global scale.

Empirical investigations on sample data indicate an increase in temperature over the

last decades. Wendler and Shulski (2009) fit a linear trend to temperature data observed
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in Fairbanks over the last century and estimate an overall increase in mean annual tem-

perature of 1.4◦C degrees. Taking five-year running means, they also notice a non-uniform

evolution throughout the sample. In addition, a comparison of seasonal means for different

sample periods suggests temperature evolves differently across seasons.

Most of the empirical analyses are based on annual data and, hence, a rich amount on

information available on higher frequency data (monthly data). Hartmann and Wendler

(2005) provide a detailed description of several climatological variables observed at differ-

ent locations in Alaska considering both annual and seasonal means. In particular, they

compare mean values observed in the periods 1951-75 and 1977-2001 (before and after the

shift observed in the Pacific Decadal Oscillation Index). Contrary to the behaviour typical

of non-linear structures (as it is the case of climate variables) the traditional assessment

of changes in temperature assumes a constant rate of change over years.

Measuring stylized facts upon comparison of statistics in different subsamples –i.e.

running means– provides some guidance about the overall evolution of climate variables.

However, it does not reveal the latent structure of the data. The focus of this study is to

have an insight into the stylized facts by means of a dynamic statistical model that allows

for seasonal specific parameters and non-linear trends. We fit the model to the the series

of average monthly temperatures observed in Fairbanks in the period December 1929 to

April 2009. The results provide a dynamic view to changes in temperature at a monthly

resolution.

The remaining of the paper is organized as follows. Section 2 gives the source of the

data analysed in this study and describes the main features observed in a preliminary

view to the data. Section 3 introduces the statistical model fitted to the data. Section 4

summarizes the results. Section 5 points out some concluding remarks.

2 Data

The Alaska Climate Research Center –http://climate.gi.alaska.edu– disseminates

historical data on temperature and other climate variables recorded in several meteo-

rological stations located in Alaska. In this document, we analyze the series of average

monthly temperatures observed in Fairbanks in the period December 1929 to April 2009.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

2

http://climate.gi.alaska.edu


3 Statistical model

We propose the following model:

yt − µs,t =
ps∑
i=1

φs,i (yt−i − µs,t−i) + εt , εt ∼ IID(0, σ2s) , (1)

µs,t =
bs∑
i=0

βs,i ψ(t) , (2)

where ψ(t) is a polynomial of degree bs that captures changes in the seasonal means.

Some of the parameters vary with the month s = 1, 2, . . . , 12. The polynomials ψ(t) that

capture time-varying means are orthogonalized to avoid numerical instability. We also

apply a tentative model which uses basic-splines polynomials (Pollock, 1999, Chapter 10).

The analysis of the series takes the following steps:

1. Choice of model (autoregressive order and polynomial orders) and fit the the model

by maximum likelihood. The choice of the model is based on the significance of

parameters. The parameters are estimated by maximizing the log-likelihood function

concentrated with respect to the scale parameters.

2. Substract the monthly time-varying means from the series and compute the time-

varying periodogram involved in the estimated autoregressive coefficients.

3. Extract components upon the decomposition of the AR model (West, 1997; Krystal

et al., 1999).

4 Results

A preliminary analysis of the data was based on the analysis of the twelve series of ob-

servations separately for each month. After removing the monthly means, the demeaned

series yt − µ̂s,t exhibited periodic autocorrelation. This fact indicates that the individual

analysis of the twelve series of monthly paths omits part of the dynamic in the data. The

observation yt is correlated with the values in previous months, thus, analysing the series

as a whole is a more appropriate approach. Our model captures periodic correlation across

months by means of lagged values of the series included as regressors. Lags up to order 2

and 3, depending on each season, were significant.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]
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5 Concluding remarks

We have shown the usefulness of a time-varying autoregressive model to capture changes in

trends of temperature data. By including month specific parameters, the analysis reveals

different trend patterns across months.

The diagnostic of the model indicates that the residuals from the fitted model are in

agreement with the disturbance term specified in the model. Nevertheless, a longer left-tail

in the histogram of the residuals causes a departure from the Gaussian assumption. The

same was found using the Laplace distribution. Using a common scaling parameter of the

distribution, the histogram of residuals resembled the Lapace density. After rescaling the

residuals using periodic standard deviations, the corresponding histogram was close to the

Normal distribution. As we worked with the likelihood function concentrated with respect

to the scale parameters, considering periodic scale parameters did not entail a greater

computational burden in the optimization algorithm. The skew Normal distribution may

be useful to capture asymmetry. However, as the degree of skewness is low, and considering

that the skew Normal does not allow concentration of parameters, the Normal distribution

is a sensible an efficient choice.

The results showed that the overall increase in temperature observed in annual data

occurs over January, February, April and December. Non-linear trends are also captured

by means of cubic polynomials.

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]
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Figure 1: Data: Average monthly temperature recorded in Fairbanks (Alaska) in the
period December 1929 to April 2009. The dots are the annual means. Source: Alaska
Climate Research Center http://climate.gi.alaska.edu.
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Figure 2: Annual means of temperature data. Coloured lines are trend estimates based
on Gram polynomials of degrees 3, 4 and 5. Some geophysical research studies attach the
shift in the level observed around 1976 to the Pacific decadal oscillation. This document
investigates whether the observed increase –whatever the cause– is homogeneous across
months.
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Figure 3: Monthly box plot of temperature data. Notice the higher variability in winter
months compared to central months of the year.
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Figure 4: Fitted monthly time-varying means. Trends in temperature levels are not
homogeneous across months: there is a substantial increase in temperature over January,
February, April and December; the temperature remains relatively constant in November
and September; the level decreases in October. Notice also non-linear patterns such as the
level in March, where the temperature increases slightly in the beginning of the sample
while, in the latest years, the level decreases.
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Figure 5: Monthly paths and fitted time-varying means. This graphic is based on the
model given in equations (1-2) and provides a dynamic view to the boxplot shown in
Figure 3. Comments given in Figure 4 applies to this plot.
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Figure 6: Time-varying spectrum. Spectral density related to the periodic autoregressive
coefficients and variances. The presence of periodicities in the autocorrelations involves
cycles of different frequency at each month of the year. We observe cycles related to
trending patterns in December and January, which are related to a more noticeable increase
in temperature in those months (as shown also in Figure 5). There are cycles of higher
frequency in November. In the remaining months, there are no substantial fluctuations
after removing the time-varying means.
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Figure 7: Model diagnostic. There is no structure remaining in the standardized residuals
(sample autocorrelations lie within the 95% confidence bands for the null of no autocor-
relation). The distribution of the standardized residuals is close to the standard Normal
distribution. However, the Jarque-Bera test for normality revealed an excess of kurtosis;
besides, the left-tail is longer than the right-tail.
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Figure 8: Components of the demeaned series. The components are based on the eigen-
structure of the periodic autoregressive parameters.
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Figure 9: Components of the demeaned series (subsample).
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Figure 10: Contour lines of time varying sample spectra (two-dimensional version of
Figure 6). Vertical dotted lines indicate the frequencies related to the components shown
in Figures 8-9.
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Figure 11: Fitted monthly time-varying means based on basic-spline functions. (The
model is tentative and does not include autoregressive regressors.) See also Figure 12.
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Figure 12: Monthly paths and fitted time-varying means based on basic-spline functions.
(The model is tentative and does not include autoregressive regressors.) See also Figure
11.
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Figure 13: Density estimate of temperatures in January conditional on the PDO index.
The conditional density is bimodal both when the PDO index is −1 and 1. When the PDO
index is −1, the mode that reaches the highest value of the density is lower than the other
mode. When the PDO index is 1, the density concentrates at higher values of temperature.
This reflects the fact that a positive value of the PDO index leads to higher temperatures.
The highest peak of the conditional density increases from −17 to −4 Farenheit degrees
when the PDO switches from −1 to 1. The change is not that sharp across years in each
circulation period, nonetheless. There are years with warmer temperatures when the PDO
is −1 and cooler periods when the PDO is 1. The humps with lower density concentrate
at temperatures of −5 and −15.5 Farenheit degrees, respectively for the PDO index equal
to −1 and 1.
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Figure 14: Estimated probabilities in an AR model with Markov switching mean for
the sample of temperatures recorded in January. The shaded areas indicate the years in
which the PDO index is over zero in January (warm regime). Despite the PDO involves a
switch between two circulation patterns, we considered the presence of three regimes in the
model fitted to the data. The traditional view states that, according to the PDO circulation
patters, there are two regimes: a colder regime before the year 1976 and a warmer period in
the second half of the sample after an abrupt increase in 1976. The statistical model fitted
to the temperatures observed in January yields three regimes characterized as follows. The
first regime is the coolest period, it refers mainly to the period 1966-1975. The second
regime covers the years before and after the cooler period around 1970, except for some
exceptional cold years in the first half of the sample that are attached to the first regime.
The third regime stands for the highest peaks in temperature, it captures the warmest
years 1937 and 1981. It also captures some other warmer years in the second half of the
sample, in agreement with a warm period according to the PDO.
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