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Abstract

Despite some practical advantages of the EM algorithm, its use in the context of struc-

tural time series models has been limited due to the observed slow convergence. We

propose an enhancement of the algorithm by incorporating information from deriva-

tive terms that are null in the original design. Simulation experiments show a notable

improvement in the convergence of the algorithm, while keeping parameter estimates

practically identical to those obtained with the original algorithm.

Keywords: EM algorithm, Kalman filter, maximum likelihood, structural time series

model, unobserved components.

1. Introduction

Structural time series models consist of building-blocks that capture different pat-

terns underlying the dynamics of the data. Several procedures have been developed

to obtain maximum likelihood estimates of the parameters in a structural time se-

ries model. The focus of this paper is the Expectation-Maximization (EM) algorithm.

We study the convergence of the EM algorithm in pure variance structural time series

models. Dempster et al. (1977) presented a formal description of the EM algorithm.

After this seminal paper the technique was applied to a large variety of situations.

Earlier developments of the EM algorithm in the context we are concerned with here

were given in Shumway and Stoffer (1982) and Watson and Engle (1983). Koopman

and Shephard (1992) and Koopman (1993) provide further calculus about the score

vector and the simulation smoother that are involved in the implementation of the EM

algorithm. The algorithm is briefly covered in the textbooks Harvey (1989, §4.2.4),

Brockwell and Davis (1996, §8.7) and Durbin and Koopman (2001, §7.3.4).



The EM algorithm is characterized by a number of virtues: the likelihood increases

at every iteration of the procedure; it often lead to neat expressions for the updating

equation; in certain contexts in time series analysis, it has been found to be robust

to poorly chosen starting values of the parameters (Hamilton, 1990); self-consistency,

which in addition to other properties implies that the same result is obtained under

a variety of changing circumstances (Efron, 1982); it ensures that the result satisfies

certain constraints such as non-negative variances. Somewhat surprisingly, Watson

and Engle (1983) and Harvey and Peters (1990) found that the convergence of the

EM algorithm in the context of structural time series models is slow. In particular, as

the algorithm approaches the local optimum, the rate of convergence becomes slower

and slower. Shumway and Stoffer (1982) noticed this fact as well, pointing it as a

disadvantage with respect to other methods. In consequence, the EM algorithm is not

widely used. As witnessed in the special issue of the Journal of Statistical Software

(Commandeur et al., 2011), the most common approach to fit a structural time series

model is the optimization of the likelihood function by means of a quasi-Newton method

(Byrd et al., 1995).

The EM algorithm has been found to converge slowly in other contexts as well.

Some ideas have been proposed in the literature to alleviate this issue. For example,

Harvey and Peters (1990) and Jamshidian and Jennrich (1994) proposed choosing a

step size at each iteration of the algorithm by means of a line search procedure. More

involved ideas are the Aitken’s acceleration method (Laird et al., 1987), the conjugate-

gradient approach presented in Jamshidian and Jennrich (1993) and the quasi-Newton

acceleration proposed in Lange (1995). These approaches mix different methods and

depart from the essence of the EM algorithm and the scope of this work.

In this paper, we propose an enhancement where derivative terms that are zero

in the original design of the EM algorithm are evaluated at some iterations of the

procedure. We show that the additional information obtained from these derivatives

improves the convergence of the algorithm, both at points further and closer to the

local optimum.

The remaining of the paper is organized as follows. The basic structural model is

introduced in Section 2. The traditional and the modified EM algorithms are described

in Section 3. Some computational issues are discussed in Section 4. The results of
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simulation experiments are summarized in Section 5. An application to two real time

series is shown in Section 6. Section 7 concludes. Mathematical derivations are given

in the appendices. The algorithms discussed in the paper were implemented in the R

language and environment (R Core Team, 2014). A software package1 and the scripts

that replicate the results shown in this paper are available upon request from the

author.

2. The basic structural model

The basic structural model (BSM) is a pure variance structural model commonly

used in applications. It is a relatively broad model and practitioners often select

restricted versions of the model. This model plays a central role in the approach

advocated in Harvey (1989) for time series analysis. A detailed view of the features

and theoretical properties of this model can be found, for instance, in Harvey (1989,

Chapter 2), Brockwell and Davis (1996, Chapter 8) and Durbin and Koopman (2001,

§3.2). The model is defined as follows:

observed series: yt = µt + γt + εt, εt ∼ NID(0, σ2ε );

latent level: µt = µt−1 + βt−1 + ξt, ξt ∼ NID(0, σ2ξ );

latent drift: βt = βt−1 + ζt, ζt ∼ NID(0, σ2ζ );

latent seasonal: γt =
∑s−1
j=1−γt−j + ωt, ωt ∼ NID(0, σ2ω),

for t = s, . . . , n, where s is the periodicity of the data.

The BSM encompasses models that are common in applications: the local level

model, that consists of a random walk with a deterministic drift β0 plus a noise com-

ponent εt; the local trend model, where the drift follows a random walk. Setting σ2ω = 0

yields a model with deterministic seasonality. Setting also γ1 = . . . = γs−1 = 0 removes

the seasonal component and gives the local trend model. Adding the restriction σ2ζ = 0

yields the local level model.

1The original implementation employs some tools for parallelization that make the installation of

the package not straighforward on some platforms. A version of the package more suitable for public

distribution is available on the CRAN repository, http://cran.r-project.org/package=stsm.
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The state space form of the BSM is given by the following representation:

yt = Zαt + εt, εt ∼ NID(0, σ2ε ),

αt = Tαt−1 +Rηt, ηt ∼ NID(0, Q),

α0 ∼ N(a0, P0),

with Q =


σ2ξ 0 0

0 σ2ζ 0

0 0 σ2ω

 ,
for t = 1, . . . , n. For s = 4, the matrices of this representation are defined as follows:

yt =

[
1 0 1 0 0

]
αt + εt,

αt ≡



µt

βt

γt

γt−1

γt−2


=



1 1 0 0 0

0 1 0 0 0

0 0 −1 −1 −1

0 0 1 0 0

0 0 0 1 0


·



µt−1

βt−1

γt−1

γt−2

γt−3


+



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


·


ξt

ζt

ωt

 .

We assume that a0 and P0 are known or chosen beforehand. The EM algorithm provides

maximum likelihood estimates of the parameters of the model, ψ = {σ2ε , σ2ξ , σ2ζ , σ2ω}.

It will be convenient to denote this vector as {σ2ε , σ2ηj} for j = 1, 2, 3. Given a set

of values for the parameters of the model, the Kalman filter and smoother are run to

extract an estimate of the latent components (level, trend and seasonal).

3. Original and enhanced EM algorithm

3.1. Original EM algorithm

The EM algorithm is an iterative procedure that computes maximum likelihood

estimates of the vector of parameters ψ. It consists of two steps: 1) expectation step,

where the expectation of the density p(α, y;ψ) is evaluated; 2) maximization step,

where the expectation is maximized with respect to the vector of parameters.

The joint log-likelihood function of the observed data and the unobserved state

vector is given by:

log p(α, y;ψ) = constant− n

2
log σ2ε −

n− 1

2
log |Q| − 1

2σ2ε

n∑
t=1

(yt − Zαt)2

− 1

2

n∑
t=2

(
(αt − Tαt−1)′(RQR′)−1(αy − Tαt−1)

)
.

(1)

Since the above log-likelihood function depends on unobserved variables, it is evaluated

with respect to the conditional probability density function of the unobserved states,
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given the observations. Then, the expected log-likelihood can be written as follows

(Shumway and Stoffer, 1982; Koopman and Shephard, 1992):

E[log p(α, y;ψ)] = constant− n

2
log σ2ε −

n− 1

2
log |Q| − 1

2σ2ε

n∑
t=1

(
ε̂2t + Var(εt|y)

)
− 1

2

n∑
t=2

trace
[(
η̂t−1η̂

′
t−1 + Var(ηt−1|y)

)
Q−1

]
.

(2)

The elements involved in this expression are obtained by means of the Kalman filter

and smoother and the disturbance smoother, given the parameters obtained at the

last iteration of the algorithm. For details see also Durbin and Koopman (2001) and

Appendix A in this paper. The first order derivatives of equation (2) with respect to

the parameters of the model are given by Shumway and Stoffer (1982), Watson and

Engle (1983) and Durbin and Koopman (2001):

∂E[log p(α, y;ψ)]

∂σ2ε
= − n

2σ2ε
+

1

2σ4ε

n∑
t=1

(
ε̂2t + Var(εt|y)

)
, (3)

∂E[log p(α, y;ψ)]

∂σ2η
= diag

[
−n− 1

2
Q−1 − (Q′Q)−1

2

n∑
t=2

(
η̂t−1η̂

′
t−1 + Var(ηt−1|y)

)]
.(4)

The equation (4) holds when Q is a diagonal matrix, as it is the case in the BSM.

This equation returns a vector containing the derivatives with respect to the variance

parameters in the state vector, σ2ηj for j = 1, 2, 3, i.e., {σ2ξ , σ2ζ , σ2ω}. Notice that deriva-

tion is required only with respect to σ2ε and the remaining parameters in Q, that is, ε̂,

Var(εt|y), η̂ and Var(ηt−1|y) are considered fixed since the expectation is taken condi-

tional on the parameters from the previous iteration. Equating the derivatives (3)-(4)

to zero and solving for the parameters of the model yields the following expressions

(Shumway and Stoffer, 1982; Koopman, 1993):

σ2ε =
1

n

n∑
t=1

(
ε̂2t + Var(εt|y)

)
; σ2ξ =

1

n− 1

n∑
t=2

(
η̂21,t−1 + Var(η1,t−1|y)

)
;

σ2ζ =
1

n− 1

n∑
t=2

(
η̂22,t−1 + Var(η2,t−1|y)

)
; σ2ω =

1

n− 1

n∑
t=2

(
η̂23,t−1 + Var(η3,t−1|y)

)
.

(5)

These are the updating equations employed in the EM algorithm as described in the

references cited above and summarized in Algorithm 1 below.

3.2. Enhanced EM algorithm

We have seen that the strategy of the EM algorithm leads to neat expressions for the

updating equations. Here, we notice that as the elements ε̂, η̂, Var(ε|y) and Var(η|y)
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Algorithm 1 EM algorithm for pure variance structural time series models

Choose an arbitrary set of values for the parameters ψ = {σ2ε , σ2ξ , σ2ζ , σ2ω}.

(1) Run the Kalman filter and smoother and the disturbance smoother.

(2) Update the parameters of the model according to equation (5).

Repeat steps (1) and (2) until a predetermined degree of convergence.

are fixed in the expectation step, the following derivatives are zero in the calculations

that lead to equations (3)-(4):

∂ε̂t
∂σ2ε

= 0;
∂ε̂t
∂σ2η

= ~0;
∂Var(εt|y)

∂σ2ε
= 0;

∂Var(εt|y)

∂σ2η
= ~0;

∂η̂t
∂σ2ε

= ~0;
∂η̂t
∂σ2η

= [0];
∂Var(ηt|y)

∂σ2ε
= ~0;

∂Var(ηt|y)

∂σ2η
= [0].

(6)

Looking at the equations of the Kalman filter and smoother summarized in Ap-

pendix A, we can see that ε̂, η̂, Var(ε|y) and Var(η|y) depend on the parameters of

the model ψ = {σ2ε , σ2ξ , σ2ζ , σ2ω}. We propose departing from the original updating

equations at some iterations of the algorithm. In particular, instead of keeping the

elements ε̂, η̂, Var(ε|y) and Var(η|y) fixed to the values of the last iteration, we update

them when the gradient is evaluated in the maximization step. It can be checked that

the gradient is then given by the following equations:

∂E[log p(α, y;ψ)]

∂σ2ε
=

1

2σ4ε

n∑
t=1

ε̂2t −
1

σ2ε

n∑
t=1

ε̂t
∂ε̂t
∂σ2ε

+
1

2σ4ε

n∑
t=1

Var(εt|y)

− 1

2σ2ε

∂Var(εt|y)

∂σ2ε
−

n∑
t=2

η̂t
∂rt
σ2ε
− 1

2σ2η

∂Var(εt|y)

∂σ2ε
,

(7)

∂E[log p(α, y;ψ)]

∂σ2ηj
= −n− 1

2σ4ηj
− 1

σ2ε

n∑
t=1

ε̂t
∂ε̂t
∂σ2ηj

− 1

2σ2ε

n∑
t=1

∂ε̂t
∂σ2ηj

+
1

2σ4ηj

n∑
t=2

η̂2j,t

− 1

σ2ηj

n∑
t=2

η̂j,t

(
rt + σ2ηj

∂rt
∂σ2ηj

)
+

1

2σ4ηj

t∑
t=2

Var(ηj,t−1|y)

− 1

2σ2ηj

∂Var(ηj,t−1|y)

∂σ2ηj
, for j = 1, . . . , 3 .

(8)

The calculus that complements these equations is given in Appendix B. The equations

(7)-(8) are more involved than the derivatives obtained in equations (3)-(4). In fact,
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it is not possible to obtain closed-form expressions for the roots of these derivatives

and they must be obtained by means of numerical methods. We use a root finding

algorithm of the class of the so-called bracketing algorithms. Among this class of

algorithms, we use Brent’s method (Brent, 1973). This method is robust to starting

values that are far from the root as well as relatively fast. An interval where the root

of the gradient is expected to lie must be specified before running the root finding

algorithm. As a general rule, the lower bound of the variance parameters can be set

equal to zero while the upper bound can be set equal to the variance of the data.

The bracketing algorithm reduces the initial interval until the root is bounded within

a tolerance chosen beforehand. The modified maximization step is summarized in

Algorithm 2.

Algorithm 2 Unconditional maximization step

For σ2 in ψ

? Solve the equations (3)-(4) for σ2:

start a root finding procedure;

within this procedure, update ε̂, η̂, Var(ε|y) and Var(η|y) for each value of σ2

tried by the root finding procedure.

? Update the parameters:

if the root finding procedure succeeded:

set σ2 equal to the root found;

else:

set σ2 equal to the corresponding value obtained from equation (5).

We will consider a modified algorithm that applies the step described in Algorithm 2

at all the iterations of the algorithm. We will denote this modified algorithm as EM-

mod. We will also consider a version that alternates the original and the modified step

as follows: the modified maximization step is run every ten iterations of the algorithm

starting from the third one, while the original step is run in the remaining iterations.

We will refer to this version as the combined EM algorithm, EM-comb for short.
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4. Further computational issues

We use a naive version of the Kalman filter, i.e., a direct implementation of the

recursions that can be found in many textbooks, for instance Harvey (1989) Chapter

3, Pollock (1999) Chapter 9, Durbin and Koopman (2001) Chapter 4. This approach

may potentially cause numerical problems. In particular, the covariance matrix of the

state vector at period t, Pt, may lose the properties of symmetry and non-negative

definiteness. As a safeguard against potential numerical instabilities, a square root

filter can be used to compute the matrix Pt. For a review on this issue see, for instance,

Tusell (2011) and references therein. In the experiments carried out in this paper, the

direct implementation of the Kalman recursions was not troublesome.

Harvey and Peters (1990) extended the EM algorithm in the context of structural

models by means of a line search used to choose at each iteration an optimal step size.

They found it helpful to improve the convergence of the EM algorithm. In a different

context, Jamshidian and Jennrich (1994) obtained small gains in the rate of conver-

gence of the EM algorithm when the step size was chosen by means of optimization

methods. Here, we stick to implement the basis of the EM algorithm in order to avoid

that ancillary elements distort the interpretation of the simulation exercises shown be-

low. Nevertheless, it may be worth exploring the effect of a line search procedure on

the proposed algorithm.

Since we are working with models defined by time invariant matrices, we may

expect that the Kalman filter will converge to a steady state (Harvey, 1989, §3.3). The

Kalman smoother and the disturbance smoother may also arrive to a steady state. At

each iteration of the filter we check whether the steady state has been reached. If the

change in the variance of prediction error, ft, is lower than the tolerance 0.001 over

5 iterations of the filter, we then consider that the filter has converged. Considerable

computational savings are therefore obtained in the remaining iterations of the filter

as well as in the Kalman smoother and the disturbance smoother.

It is worth noting that the updating step is independent for each parameter. The

root finding procedure that is run to obtain a new value of a parameter, say σ2ξ , does

not require any output from other root finding procedures that are run to update the

remaining parameters. Therefore, assuming we are working in a multiple-core proces-

sor –which are nowadays common in standard computers– the updating step of the
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algorithm can be computed in parallel. That is, instead of updating each parameter

serially, the computations are run concurrently by all the available cores. We imple-

mented and tried this approach in a dual-core processor using the Cilk Plus extension

of the C language (Intel Corporation, 2010).

5. Simulation results

We perform simulation experiments that consist of 1,000 time series of length 120.

The series are generated from the local level model, local trend model, local level with

a seasonal component and from the basic structural model with no disturbance term

in the observation equation, σ2ε = 0. Maximum likelihood parameter estimates are

obtained by means of the algorithms introduced in Section 3. Following the common

practice, the initial state vector, a0, is defined as a vector of zeros except for the first

element, which is set equal to the first observation of the data. The uncertainty on

this initial vector is reflected through its covariance matrix, P0, which is defined as a

diagonal matrix that takes on a large value, 106 times the variance of the data. Starting

parameter values are set equal to 1. The stopping rule is defined by a tolerance equal

to 0.01. The maximum number of EM iterations allowed is 250.

Table 1 reports average parameter estimates obtained for each procedure and

model. The true parameter values used to generate the data are given in the first

row, labelled DGP. The rows labelled EM-orig , EM-mod and EM-comb report the results

for the algorithms described in Section 3, which are respectively: the traditional EM

algorithm, the modified EM algorithm (that uses the modified updating equations at

every iteration) and the combined algorithm (that interchanges the original and the

modified equations every ten iterations). On average, parameter estimates are close to

the true values regardless of the version of the EM algorithm. Although not reported,

these results were very similar to the local optimum found by maximizing the likeli-

hood function using a quasi-Newton method. When differences were noticeable, the

results based on the EM algorithm were often closer to the true vector of parameters,

giving evidence of the robustness of this method.

Differences in the estimates between the original and the combined versions of

the EM algorithm were not expected. More importantly, Table 1 reveals that even

when the updating equations proposed in Algorithm 2 are used in all iterations of the
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Table 1: Average parameter estimates

Local level model

σ2
ε σ2

ξ

DGP 1600.00 100.00

EM-orig 1608.15 99.47

EM-mod 1609.07 99.19

EM-comb 1608.96 99.24

Local trend model

σ2
ε σ2

ξ σ2
ζ

100.00 30.00 1.00

100.42 29.79 1.01

99.94 30.85 0.96

100.06 30.59 0.98

Local level plus seasonal

σ2
ε σ2

ξ σ2
ω

DGP 300.00 10.00 100.00

EM-orig 298.92 10.11 100.65

EM-mod 300.07 9.94 100.43

EM-comb 299.95 9.95 100.48

Basic structural model

σ2
ξ σ2

ζ σ2
ω

25.00 5.00 100.00

25.05 4.88 101.09

25.14 4.88 101.12

25.12 4.88 101.12

algorithm, practically the same results as the original algorithm is obtained. Therefore,

according to these simulations the proposed updating equations do not distort the

original rationale of the EM algorithm.

Table 2 reports the number of EM steps required for convergence. Figure 1 il-

lustrates these results displaying the paths followed by the original and the modified

algorithms from the starting point to the local optimum. These paths are related to

two of the simulated series that were representative of the whole exercise. As others

have noticed, we can see that the traditional design of the EM algorithm, EM-orig, con-

verges slowly especially as it approaches the local optimum. The modified procedures

converge in far less number of iterations in all models considered in these exercises. For

example, EM-mod converged on average in 26 iterations for the local level plus seasonal

model. The original procedure required many more iterations, 177 on average, for the

same model. A considerable reduction in the number of iterations is also observed for

the other models. The number of cases in which the maximum number of iterations

is reached is indicated in brackets in Table 2. In these examples, the performance of

the modified procedures is notably better than the traditional implementation. For

example, in the local level model, EM-orig did not converge after 250 iterations in 101

out of the 1,000 simulated series, while EM-mod failed to converge only in 9 cases.

In most of the applications of the structural models considered here, the time
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Figure 1: Sample paths to the local optimum

The figures show sample paths to the local optimum for two simulated series, respectively for the local

level and the basic structural model with no disturbance term in the observation equation, σ2
ε = 0.

Each coordinate gives the value that each parameter (labelled here as ‘var1’, ‘var2’, ‘var3’) takes on

at each step of the algorithm. Each arrow represents an EM iteration. Gray arrows –with narrower

tip’s angle– depict the path followed traditional EM algorithm. Blue arrows –with broader tip’s angle–

depict the path followed by the modified algorithm EM-mod.
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Table 2: Number of iterations until convergence

Local level model

Min. Median Mean Max.(#)

EM-orig 48 134 147 250 (101)

EM-mod 6 12 16 250 (9)

EM-comb 8 28 33 250 (8)

Local trend model

Min. Median Mean Max.(#)

49 240 212 250 (441)

11 34 52 250 (41)

9 58 63 250 (14)

Local level plus seasonal

Min. Median Mean Max.(#)

EM-orig 79 168 177 250 (195)

EM-mod 10 19 26 250 (19)

EM-comb 38 58 64 250 (18)

Basic structural model

Min. Median Mean Max.(#)

11 150 151 250 (56)

6 21 25 250 (2)

9 43 47 250 (1)

Continuation of results in Table 1. Min., minimum; Max., maximum.

required for computations is not usually an issue. For example, running the algorithm

for one of the simulated series took on average less than one second. Nevertheless, since

the proposed procedure is more cumbersome, for completeness, we show in Table 3

the time employed by each procedure. We include the timings of the implementation

mentioned in Section 4, where the updating step of the modified algorithm is computed

in parallel. Parameter estimates and convergence of the parallel implementation were

the same as those reported for EM-mod in Tables 1 and 2. As expected, the modified

version is slower than the traditional implementation. For example, EM-orig employed

on average 0.19 seconds to return parameter estimates in the local trend model, while

EM-mod employed 0.48 seconds on average. Parallelization reduces the computational

time of EM-mod by around a 30%. The parallel implementation of EM-mod was run in

a dual-core processor; further gains can be expected in a processor with three cores,

that is, with as many cores as parameters to be estimated. The local level model is a

special case. For this model, EM-mod is slightly faster than EM-orig and parallelization

does not result in a noticeable improvement. The reason is that computations are

less demanding in this model since the Kalman filter does not involve operations with

matrices but with scalars.

As regards the combined procedure, in these examples it achieved a sensible trade-

off between the rate of convergence and the computational time. It is slightly faster
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(except in the local level model) although as mentioned before, timing is not an issue in

this kind of applications. The point is that the converge in terms of number of iterations

is improved with the proposed version of the algorithm. In addition, as reported in

Table 2, the number of cases where the combined procedure did not converge after 250

iterations was notably lower than for the original procedure and slightly lower than for

EM-mod.

Table 3: Elapsed time until convergence (in seconds)

Local level model

Min. Median Mean Max.

EM-orig 0.03 0.07 0.08 0.15

EM-mod < 0.01 0.01 0.01 0.21

EM-mod parallel < 0.01 0.01 0.01 0.04

EM-comb < 0.01 0.02 0.02 0.15

Local trend model

Min. Median Mean Max.

0.04 0.21 0.19 0.26

0.15 0.43 0.48 1.30

0.10 0.29 0.32 0.91

0.02 0.12 0.13 0.49

Local level plus seasonal

Min. Median Mean Max.

EM-orig 0.08 0.17 0.18 0.30

EM-mod 0.18 0.33 0.36 1.63

EM-mod parallel 0.13 0.23 0.25 1.15

EM-comb 0.08 0.13 0.14 0.56

Basic structural model

Min. Median Mean Max.

0.01 0.15 0.15 0.30

0.07 0.34 0.35 1.24

0.07 0.24 0.26 0.93

0.02 0.10 0.11 0.55

Continuation of results in Table 1. Min., minimum; Max., maximum.

6. Application to real data

In this section, we illustrate the use of the traditional and the modified EM algo-

rithms with two real applications. We fit a structural model to the annual series of flow

measurements in river Nile (1871-1970) and to the quarterly series of gas consumption

in UK (1960-1986). The latter series is transformed as 100 times the logarithms of the

original data. The results are shown in Table 4. As a benchmark, the estimates ob-

tained through the optimization of the likelihood function by means of a quasi-Newton

algorithm are also reported. This procedure is labelled as ‘qN-optim’.

The local level model is fitted to the Nile time series. The results are almost

identical for all the procedures given a tolerance for convergence equal to 0.01. The

number of iterations required for convergence are in line with the simulation results
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discussed above. The convergence rate is the slowest in the EM-orig procedure (329

iterations); EM-mod converges in 27 iterations and the combined procedure is in-between

(88 iterations).

The basic structural model is fitted to the series of gas consumption in UK. The

results are similar for all the procedures. The main difference is the allocation of the

variance in the trend component. EM-orig returns a variance for the level component

larger than the other procedures, σ2ξ = 0.77. The result obtained with the quasi-

Newton optimization method implies a more relevant role of the slope, σ2ζ = 0.92,

relatively to the level, σ2ξ = 0.00. In EM-orig and EM-mod the ratio σ2ξ/σ
2
ζ is larger

than unity, instead. In the combined procedure, EM-comb , this ratio is close to unity.

Although not displayed, the resulting fitted components (trend and seasonal) were

very similar and major differences were not graphically observed. As in the previous

application, the number of iterations required for convergence are in line with the

behaviour observed in the simulations, except that the combined procedure converges

in the same number of iterations as EM-mod.

Table 4: Estimated parameters for Nile and UK gas consumption time series

Nile annual flow

σ2
ε σ2

ξ #

qN-optim 15098.58 1469.15 −

EM-orig 15098.21 1469.38 329

EM-mod 15098.53 1469.17 27

EM-comb 15098.33 1469.30 88

UK gas quarterly consumption

σ2
ε σ2

ξ σ2
ζ σ2

ω #

19.50 0.00 0.92 37.84 −

16.18 0.77 0.06 34.23 165

17.61 0.23 0.07 33.42 39

18.05 0.06 0.08 33.20 39

‘qN-optim’ optimizes the likelihood function by means of a quasi-Newton algorithm. # stands for

the number of EM steps until convergence (not applicable for ‘qN-optim’). In the combined procedure

EM-mod is run every ten iterations starting from the third one and EM-orig is run in the other

iterations.

7. Conclusion

We have proposed a modification of the EM algorithm in the context of structural

time series models where information from derivative terms that are fixed to zero in

the original algorithm is included at some iterations of the procedure. We derived full

expressions of the derivative terms and modified the algorithm accordingly.
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Simulation results validate the proposed modification of the EM algorithm. Firstly,

as in the original EM algorithm, parameter estimates close to the true values of the

data generating process are obtained. Secondly, a considerable improvement in the

rate of convergence is achieved when information from the derivative terms introduced

in § 3.2 is incorporated at some or all the iterations.

We have shown that the proposed enhancement to the EM algorithm makes it a

compelling procedure that can be used to obtain maximum likelihood estimates in pure

variance structural time series models. We conclude that the algorithm is an appealing

alternative to the prevalent quasi-Newton optimization method.

The proposed algorithm is computationally more intensive than the original design.

Since some of the computations are independent of each other, we implemented a

parallel version that reduced the computational time by around a 30%. The simulation

experiments suggest that a parallel implementation of the modified algorithm and a

procedure combining the traditional and the modified EM algorithm are the most

practical approaches in terms of computational time.

Appendix A. Kalman filter and smoother and disturbance smoother

The Kalman filter computes at each iteration the state vector estimator at ≡

E(αt|y1, . . . , yt) and its variance-covariance matrix Pt ≡ Cov(αt|y1, . . . , yt), as follows:

vt = yt − Zat, prediction error; Mt = PtZ
′;

ft = ZMt + σ2ε , variance of prediction error;

Kt = TMt/ft, Kalman gain; Lt = T −KtZ;

at+1 = Tat +Ktvt, state vector’s prediction; Pt+1 = TPtL
′
t +RQR′,

for t = 1, . . . , n. The filter starts with a1 = [y1, 0 · · · 0]′ (with s zeros, where s is the

periodicity of the data) and P1 initialized as a s+ 1 diagonal matrix with value 106×

variance of {y1, . . . yn}.

The Kalman smoother computes the state estimator given the complete series of ob-

servations, α̂t = E(αt|y1, . . . , yn) and its variance-covariance matrix Cov(αt|y1, . . . , yn).

We denote the diagonal of the former matrix as Var(αt|y1, . . . , yn). The smoothed es-

timates of the disturbances and the corresponding variances are computed by the
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disturbance smoother recursions:

rt−1 = Zvt/ft + L′trt; Nt−1 = Z ′Z/ft + L′tNtLt; α̂t = at + Ptrt−1;

ε̂t = σ2ε (vt/ft −K ′trt); η̂t = QR′rt;

Var(αt|y) = diag (Pt − PtNt−1Pt) ; Var(εt|y) = σ2ε − σ4ε (1/ft +K ′tNtKt);

Var(ηj,t|y) = diag (Q−QR′NtRQ) ,

for t = n, . . . , 1, with rn = 0 and Nn = 0.

Appendix B. Derivative terms

Similarly to the Kalman recursions, the derivative terms are computed iteratively

according to the equations given below. The term σ2· refers to any of the variance

parameters in the model, {σ2ε , σ2ξ , σ2ζ , σ2ω}. The indicator variable I(Z) returns the

indices of the elements in Z that are equal to 1; α̂t,i refers to the i-th element of α̂t,

which is of the same order as Z.

It is convenient to write ε̂t as ε̂t = yt − α̂t, then:

∂ε̂t
∂σ2·

= −
∑

i∈I(Z)

∂α̂t,i
∂σ2·

,
∂α̂t
∂σ2·

=
∂at
∂σ2·

+
∂Pt
∂σ2·

rt−1 + Pt
∂rt−1
∂σ2·

.

The variance parameters related to the disturbances in the state vector of the

model, {σ2ξ , σ2ζ , σ2ω} are denoted as σ2ηj . The subscript in η̂j,t refers to the position in

the state vector at period t that is related to the disturbance term whose variance is

σ2ηj ; rt,j refers to the element of rt that is related to the the disturbance ηj .

∂η̂t,j
∂σ2ε

= σ2ηj
∂rt,j
∂σ2ε

;
∂η̂t,j
∂σ2ηj

= rt,j + σ2ηj
∂rt,j
∂σ2ηj

.

∑
i,j∈I(Z)M denotes the sum of the elements in the matrix M crossing the i-th row

and the j-th row. The sum is done for i and j taking the values of the indices of those

elements in matrix Z that are equal to 1.

∂Var(εt|y)

∂σ2·
=

∑
i,j∈I(Z)

∂Cov(αt|y)i,j
∂σ2·

=
∑

i,j∈I(Z)

(
∂Pt
∂σ2·
− ∂Pt
∂σ2·

Nt−1Pt − Pt
∂Nt−1
∂σ2·

Pt − PtNt−1
∂Pt
∂σ2·

)
i,j

.

The term diag (M)ηj denotes the element in the diagonal of the matrix M that

is related to the component ηj in the state vector. For example, according to the
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specification of the basic structural model, j = 1 denotes the first component related

to disturbance term with variance σ2ξ , then, (Nt)ηj corresponds to the first element in

the diagonal of Nt.

∂Var(ηj,t|y)

∂σ2ε
= −

(
σ2ηj

)2
diag

(
∂Nt

∂σ2ε

)
ηj

;

∂Var(ηj,t|y)

∂σ2ηj
= −

(
σ2ηj

)2
diag

(
∂Nt

∂σ2ηj

)
ηj

+ 1− 2σ2ηjdiag (Nt)ηj .

The following derivatives are computed during the recursions of the Kalman filter:

∂at|t−1
∂σ2·

= T
∂at−1
∂σ2·

.

∂at
∂σ2·

=
∂at|t−1
∂σ2·

+
∂Pt|t−1
∂σ2·

Z
vt
ft
− Pt|t−1Z ′/f2t

∂ft
∂σ2·

+ Pt|t−1Z
′/ft

∂vt
∂σ2·

.

∂Pt|t−1
∂σ2·

= T
∂Pt−1
∂σ2·

T ′ +
∂Q

∂σ2·
.

∂Pt
∂σ2·

=
∂Pt|t−1
∂σ2·

−
∂Pt|t−1
∂σ2·

Z ′ZPt|t−1/ft + Pt|t−1Z
′/ft

∂ft
∂σ2·

Z/ftPt|t−1 − Pt|t−1Z ′Z/ft
∂Pt|t−1
∂σ2·

.

∂rt
∂σ2·

= Z
∂vt/ft
∂σ2·

+
∂Lt
∂σ2·

′
rt+1 + L′t

∂rt+1

∂σ2·
,

where

∂vt/ft
∂σ2·

=

(
∂vt
∂σ2·

ft − vt
∂ft
∂σ2·

)
/f2t ;

∂vt
∂σ2·

= −Z ∂at
∂σ2·

;

∂ft
∂σ2ε

= Z
∂Pt
∂σ2ε

Z ′ + 1;
∂ft
∂σ2ηj

= Z
∂Pt
∂σ2ηj

Z ′

and

∂Nt

∂σ2·
= −Z ′Z ∂ft

∂σ2·
/f2t +

(
∂Lt
∂σ2·

)′
Nt+1Lt + L′t

∂Nt+1

∂σ2·
Lt + L′tNt+1

∂Lt
∂σ2·

,

∂Lt
∂σ2·

= −∂Kt

∂σ2·
Z.
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