

Seasonal Adjustment of Euro Area HICPs and Industrial Producer Price Indices

Javier López-de-Lacalle

European Central Bank – DG Statistics

12 December 2006

Sketch of the presentation

HICPs

Energy price index.

o Can seasonality be identified?

Unprocessed food price index.

- Provide seasonally adjusted series.
- Compare the direct and the indirect approach.
- O X-12-ARIMA and TRAMO/SEATS.

Services.

- Passenger transport and package holidays.
- Working-day adjustment? Easter effect? A preliminary view.

EUROPEAN CENTRAL BANK

Sketch of the presentation

Industrial Producer Price Indices

Seasonality in

- o Intermediate goods.
- Consumer goods excluding tobacco.

Further issues

- o National HICPs.
- o Seasonal breaks.
- 0 ...

HICPs. Overview I

Sources

- Eurostat provides unadjusted HICP data.
- Upon the recommendations agreed by the Statistics Committee in 2000

DG-S compiles:

Seasonally adjusted HICP data for the euro area.

Seasonally adjusted data for the following euro area aggregates: unprocessed food, processed food, non-energy industrial goods and services.

Seasonally adjusted all-items index for EU countries.

HICPs. Overview II

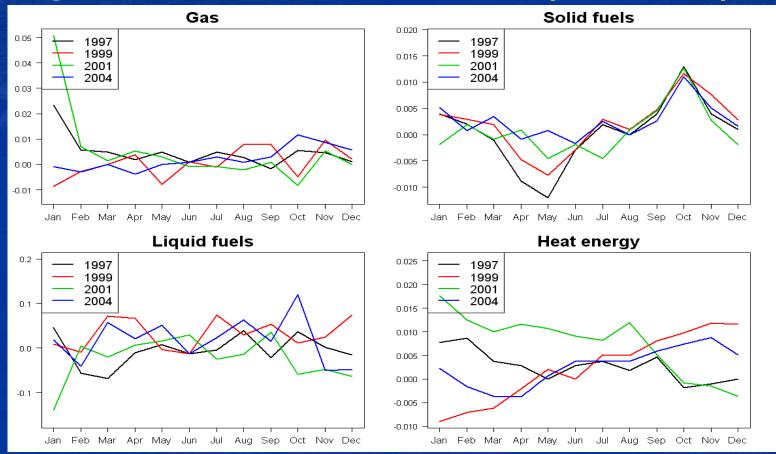
Approach

- Euro area overall HICP is indirectly adjusted by aggregating the four seasonally adjusted components and the non-adjusted energy component.
- The four components for the euro area are directly adjusted.

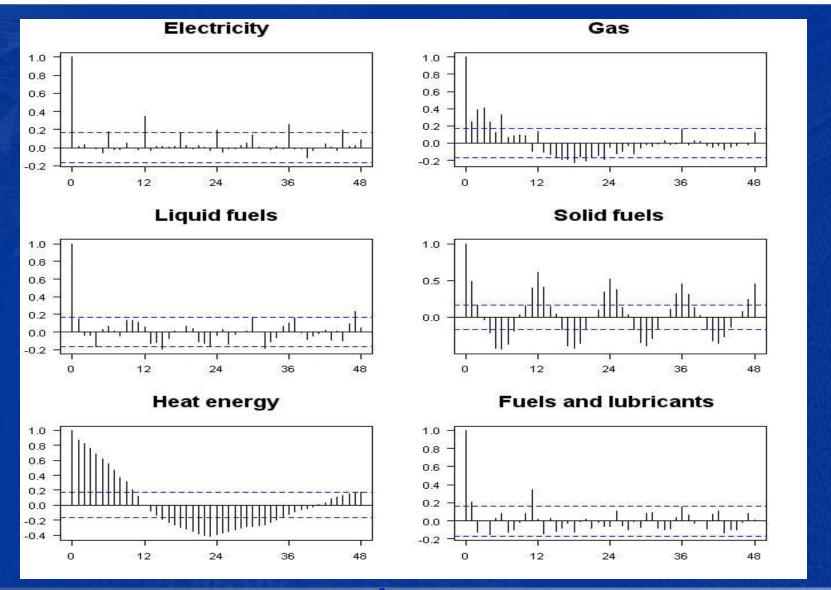
Methodology

- X-12-ARIMA is employed.
- Monthly seasonal adjustment quality reports.
- Annual review of model, outliers and options.

HICPs. Energy price index


- The energy price index is not seasonally adjusted.
- The 4-digit COICOP-components for this aggregate consists of six series.

Components	COICOP	Weight
Electricity	045100	2.0%
Gas	045200	1.5%
Liquid fuels	045300	0.9%
Solid fuels	045400	0.1%
Heat energy	045500	0.5%
Fuels and	072200	4.2%


lubricants

Energy price index. Annual paths

- These components are influenced by the effect of taxes and administered prices.
- In general, the series do not exhibit a major seasonal pattern.

Energy price index. Correlograms

Energy price index. Seasonal dummies

Regression on seasonal dummies.

	eled	ctricity	第 第	gas		liqu	id fuel	s
	Coeff.	t-stat.	Coeff.	t-st	at.	Coeff.	t-sta	at.
SD1	71.88	5.28 ***	1.82	7.08	***	-0.66	-0.48	78
SD2	4.80	0.38	-0.08	-0.40		0.53	0.38	
SD3	-0.95	-0.08	-0.41	-1.68	9.	2.42	1.76	*
SD4	24.91	1.93 .	-0.23	-0.93		-0.10	-0.07	
SD5	-9.56	-0.75	-0.08	-0.40		-0.78	-0.56	
SD6	3.25	0.26	-0.05	-0.24		-0.86	-0.59	
SD7	3.32	0.25	-0.09	-0.35		1.63	1.16	
SD8	0.05	0.00	0.21	0.98		3.82	2.49	*
SD9	0.26	0.02	0.19	0.87		4.92	3.36	**
SD10	-9.01	-0.66	0.32	1.45		1.97	1.28	
SD11	7.48	0.56	0.68	3.08	**	-2.20	-1.50	
SD12	-1.37	-0.10	0.29	1.14		-2.21	-1.49	
	A.V.		DIRA			2011		.00
3	$R^2 =$	0.38	$R^2 =$	0.64		$R^2 =$	0.26	
	F-st =	2.67 **	F-st =	5.91	***	F-st =	2.34	*
	DW =	1.80	DW =	1.81		DW =	1.96	
	JB =	758.88 ***	' JB =	24.64	***	JB =	24.86	***

Energy price index. Seasonal dummies

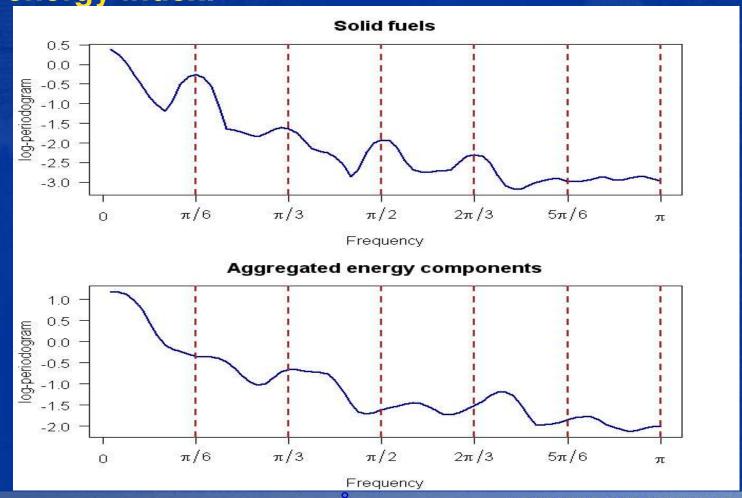
Regression on seasonal dummies.

20 .	soli	d fuels	heat	energy	f.l.p.	t.e.
	Coeff.	t-stat.	Coeff.	t-stat.	Coeff.	t-stat.
SD1	29.82	3.96 ***	0.18	1.58	0.27	0.47
SD2	4.23	0.53	-0.24	-2.04 *	0.73	1.32
SD3	-3.18	-0.38	-0.12	-1.08	0.98	1.79 .
SD4	-43.86	-3.77 ***	0.23	2.06 *	1.32	2.42 *
SD5	-33.95	-3.79 ***	-0.08	-0.70	0.15	0.26
SD6	-13.33	-1.66 .	-0.09	-0.81	-0.21 -	0.38
SD7	12.48	1.54	0.19	1.69 .	0.03	0.06
SD8	2.76	0.37	0.03	0.22	0.44	0.78
SD9	43.55	5.86 ***	0.13	1.12	1.24	2.22 *
SD10	98.07	11.29 ***	-0.17	-1.48	-0.25 -	0.44
SD11	34.87	2.86 **	0.03	0.28	-1.38 -	2.44 *
SD12	6.60	0.75	-0.03	-0.26	-0.92 -	1.61
()) 						- 22
-	$R^2 =$	0.75	$R^2 =$	0.41	$R^2 =$	0.36
	F-st $=$	17.06 ***	F-st =	2.14	F-st =	1.86 *
	$\mathrm{DW} =$	1.99	DW =	2.07	DW =	1.97
	JB =	5.39 .	JB =	45.10 **	* JB =	1.70

Energy price index. TRAMO

ARIMA model with regression variables

*	Model	Outliers	Diagn	ostic of the re	esiduals
			DW^a	JB^b	Runs ^c
electricity	(0,1,0)(0,1,1)	LS 1996:01; LS 1999:01; LS 1999:04; LS 1999:10; LS 1996:07; TC 2000:01	1.87	19.33 ***	-0.18
gas	(2,2,0)(0,0,0)	LS 1997:01; LS 2000:01; LS 2000:11; TC 2001:01; LS 2003:01; TC 2005:01; LS 2006:11	2.09	0.71	-0.35
liquid fuels	(0,1,1)(0,1,1)	TC 2000:09; LS 2001:01; LS 2003:04; TC 2004:10	2.02	0.06	0.91
solid fuels	(1,1,0)(0,1,1)	LS 1995:07; LS 1998:10; AO 2000:04; LS 2001:01; LS 2005:10;	1.84	0.68	0.00
heat energy	(1,2,0)(0,0,1)	TC 2000:01; LS 2005:09; LS 2006:01; AO 2006:04;	1.98	11.88 ***	-0.35
f.l.p.t.e.	(1,1,1)(0,0,0)	LS 1999:04; TC2000:09	1.92	1.30	-0.17


Energy price index. X-12-ARIMA

Tests for the presence of identifiable seasonality.

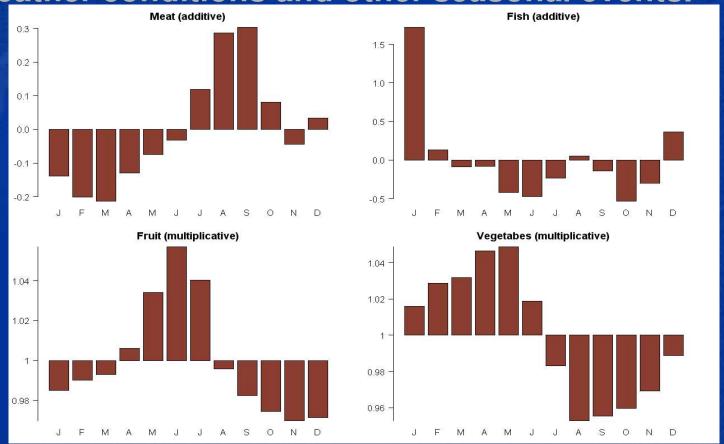
	F-test	Kruskal- Wallis	Moving seasonality	Combined test
Electricity	Yes	Yes	Yes	Probably not present
Gas	No	Yes	No	Not present
Liquid fuels	No	Yes	Yes	Not present
Solid fuels	Yes	Yes	Yes	Present
Heat energy	No	No	No	Not Present
Fuels and lubricants	Yes	Yes	Yes	Not present

Energy price index. Log-periodogram

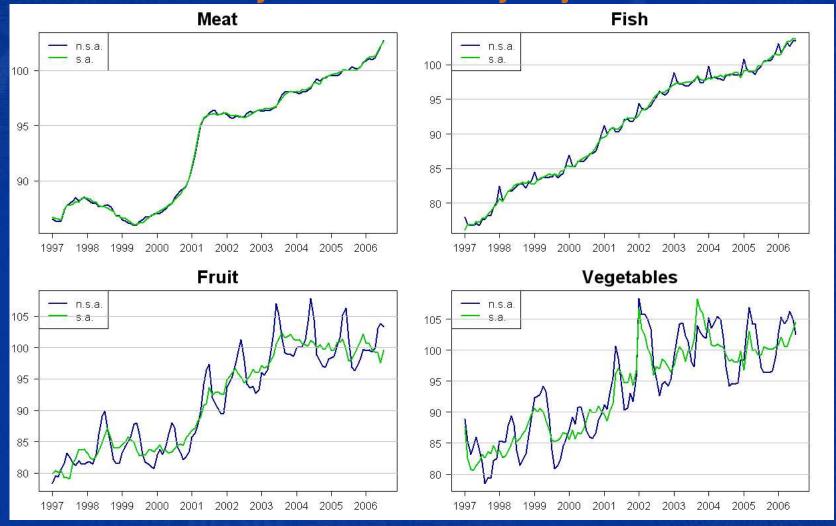
Seasonal cycles are not relevant in the aggregated energy index.

Energy price index. Summary

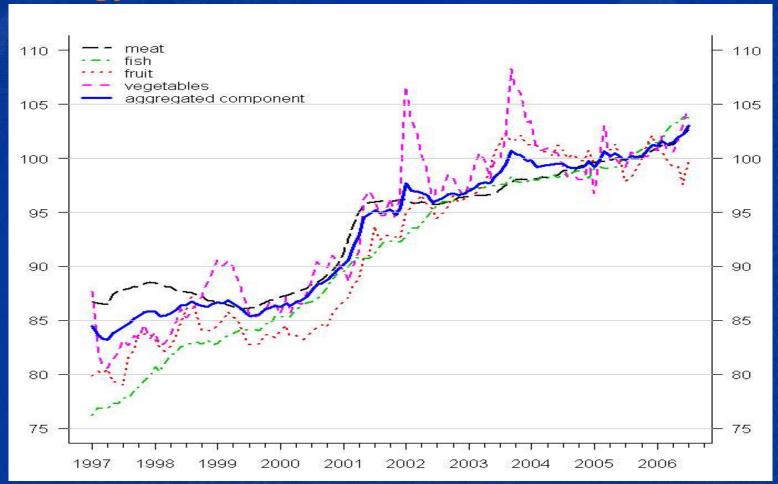
- Seasonality is reliably identified only in the solid fuels component.
- Level shifts and temporary changes are detected in all the energy components.
- Changes in taxes remain as part of the seasonally adjusted series if those events are not identified as a recurrent seasonal pattern.
- By comparing unadjusted and semi-adjusted ser ser solute differences are negligible.

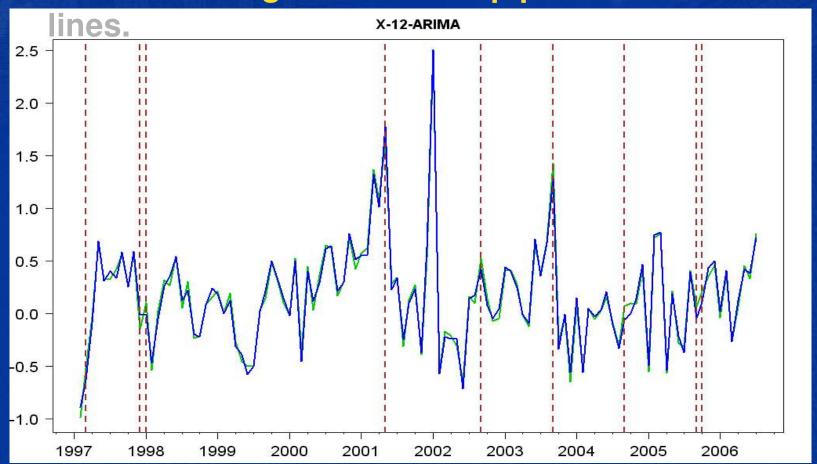

Full agreement in the growth rates.

HICPs. Unprocessed food price index


 The 4-digit COICOP-components for this aggregate consists of four series.

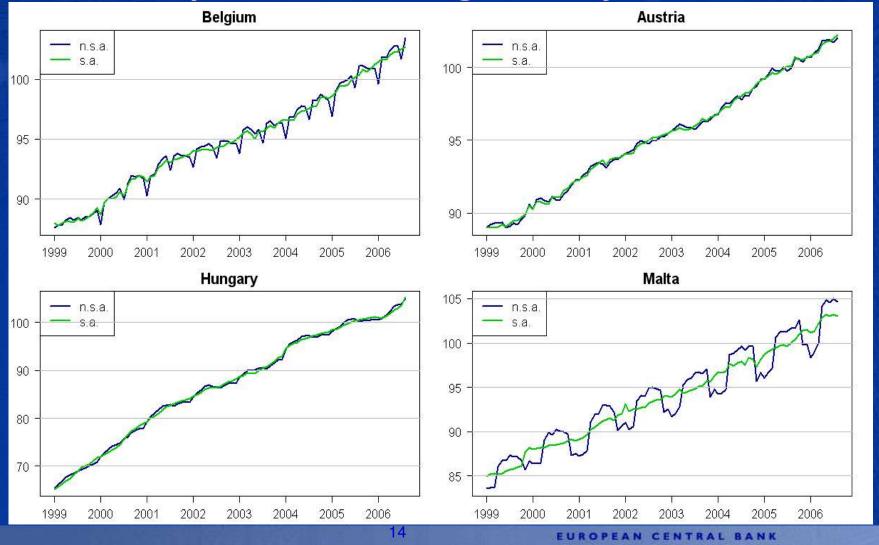
Components	COICOP	Weight
Meat	011200	3.7%
Fruit	011300	1.2%
Fish	011600	1.1%
Vegetables	011700	1.5%


 Seasonal factors. These components typically display seasonal patterns that are guided by weather conditions and other seasonal events.


Non-seasonally and seasonally adjusted. X-12-ARIMA.

Seasonally adjusted components and aggregated energy index. X-12-ARIMA.

- Direct and indirect approaches. (X-12-ARIMA).
- Differences higher than 0.10 p.p. see vertical



Direct and indirect approaches: Comparison.

		X-12-	TRAMO/
		ARIMA	SEATS
Absolute percentage	average	0.05	0.10
deviations	maximum	0.18	0.25
Percentage of concordar in growth rates	Percentage of concordance in growth rates		
David and the second	mean	0.00	0.00
Percentage of differences in growth rates	minimum	-0.15	-0.23
	maximum	0.14	0.23
	variance	0.00	0.01

National HICP data

Seasonal patterns varies significantly across

HICPs. Services

• The following 4-digit COICOP-components are analysed.

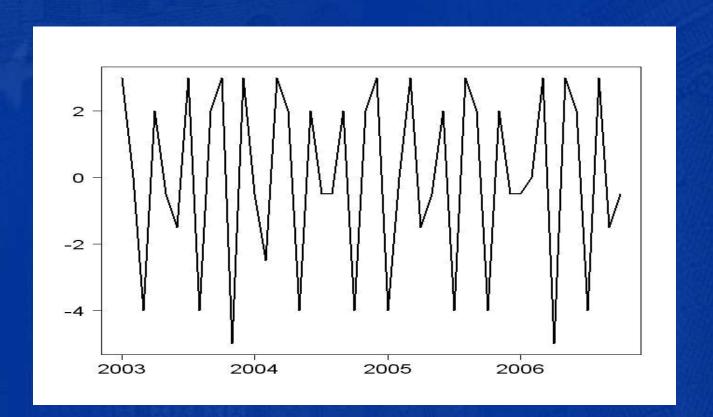
Components	COICOP	Weight
Passenger transport		
by railway	073100	0.4%
road	073200	0.5%
air	073300	0.5%
sea and inland water	073400	0.1%
Combined passengers	073500	0.5%
transport		
Other purchased	073600	0.1%
transport services		
Package holidays	096000	1.4%

HICPs. Services

Calendar effects

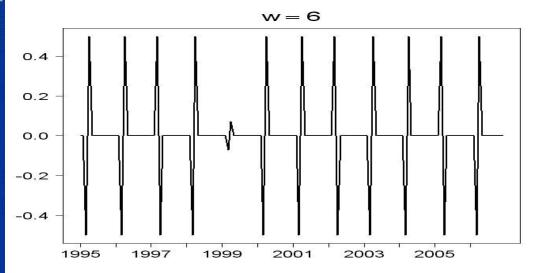
Trading-day. This regressor is defined as:

$$TD_t = \#(Mo, Tu, We, Th, Fr) - \#(Sa, Su) \cdot 5/2$$


Easter effect. This regressor captures a potential change in the series during the w days before Easter.

$$E_t = \beta [P(w)_t - 1/2]$$

The values for March are the proportion of the w days that fall in that month minus the mean value of that proportion over a long period (0.5). The same for April. Zeros for the other months.


Trading-day. This regressor is defined as:

 $TD_t = \#(Mo, Tu, We, Th, Fr) - \#(Sa, Su) \cdot 5/2$

Easter effect. This regressor captures a potential change in the series during the w days before $E_{E_*} = \beta[P(w), -1/2]$

The values for March are the proportion of the *w* days that fall in that month minus the mean value of that proportion over a long period (0.5). The same for April. Zeros for the other months.

ARIMA model with regression variables.

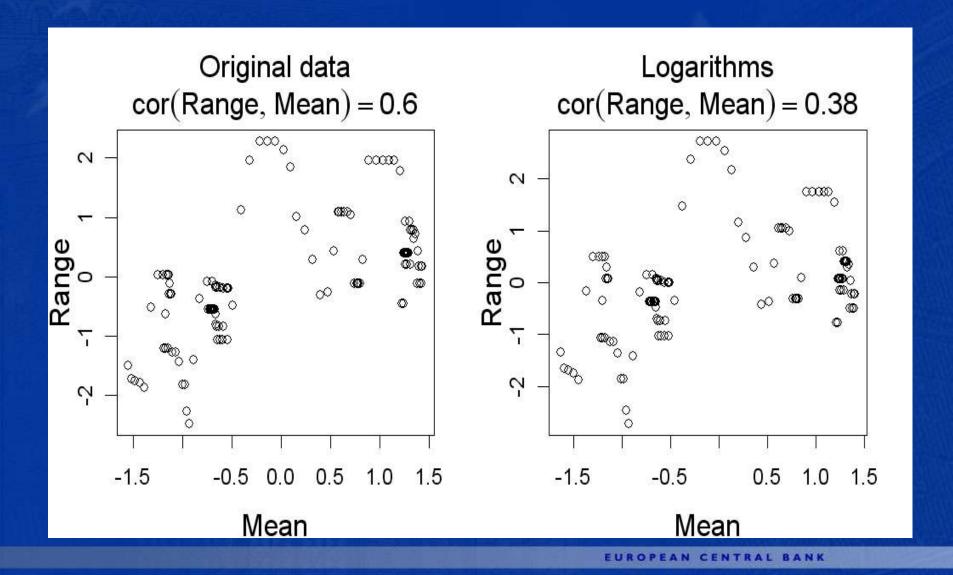
		Coefficient	t-stat.	p-value
073100	Trading Day	0.00	-0.25	0.7989
	Easter	-0.09	-1.92	0.0547 *
073200	Trading Day	0.00	0.47	0.6362
073200	Easter	0.00	0.71	0.4755
073300	Trading Day	0.00	-0.46	0.6446
073300	Easter	0.01	3.30	0.0010 ****
073400	Trading Day	-0.03	-1.33	0.1840
073400	Easter	-0.10	-0.27	0.7873
073500	Trading Day	0.00	0.79	0.4274
073300	Easter	0.00	0.01	0.9907
073600	Trading Day	0.01	1.59	0.1130
0/3000	Easter	-0.03	-0.65	0.5136
096000	Trading Day	0.00	-2.32	0.0202 **
090000	Easter	0.03	5.89	0.0000 ****

ARIMA model with regression variables.

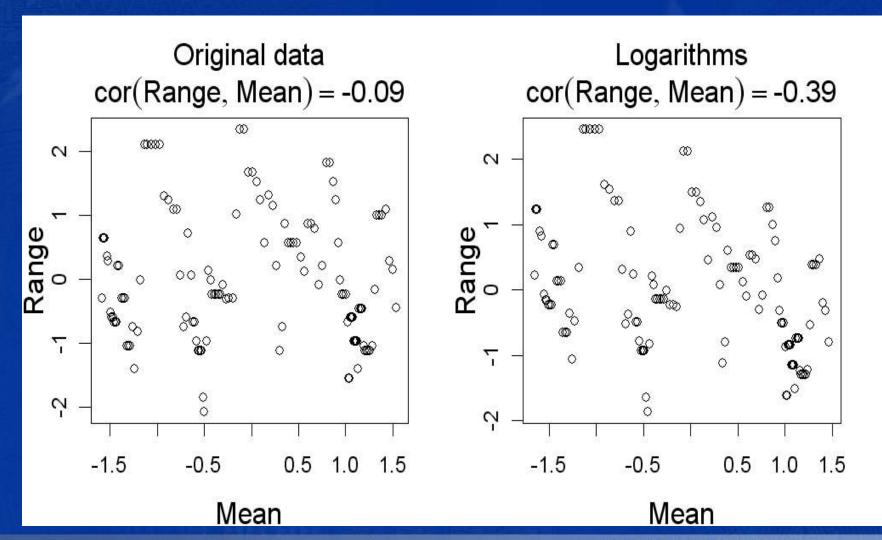
	Altima illouel with regression variables.				
ATTAY AVEY	YATE TO SERVE	Coefficient	t-stat	p-value	
073100	Trading day	0.00	-0.25	0.7989	
073100	Easter	-0.09	-1.92	0.0547 *	
073200	Trading day	0.00	0.47	0.6362	
013200	Easter	0.00	0.71	0.4755	
073300	Trading day	0.00	-0.46	0.6446	
073300	Easter	0.01	3.30	0.0010 ****	
073400	Trading day	-0.03	-1.33	0.1840	
010400	Easter	-0.10	-0.27	0.7873	
073500	Trading day	0.00	0.79	0.4274	
073300	Easter	0.00	0.01	0.9907	
073600	Trading day	0.01	1.59	0.1130	
073000	Easter	-0.03	-0.65	0.5136	
096000	Trading day	0.00	-2.32	0.0202 **	
090000	Easter	0.03	5.89	0.0000 ****	

HICPs. Services

- Easter effect appears to be significant in passenger transport by railway and by air and package holidays.
- Trading day is found significant in package holidays.
- The performance of the standard trading day regressor is often improved by a regressor containing the specific dates of holidays.


Industrial Producer Price Indices

		SA series in \$sts data base	Identifiable seasonality	
ns0030	Mining, quarrying	No	Not present	
ns0040	Intermediate goods	No	Present	*
ns0050	Capital goods	Yes	Present	
ns0060	Durable consumer	Yes	Present	
ns0070	MOAdurable consumer goods	Yes	Present	
ns0080	Consumer goods	Yes	Present	
ns0081	Consumer goods excl. tobacco	No	Present	*
ns0090	Energy	No	Not present	


Industrial Producer Price Indices

- Intermediate goods price series
 - Weak seasonality is identified.
 - o Cycles of length 6-8 years are found to be relevant.
- Consumer goods excluding tobacco
 - o A relatively stronger can be identified.
 - o Weaker cycles of length 4 years are also relevant.

fruit

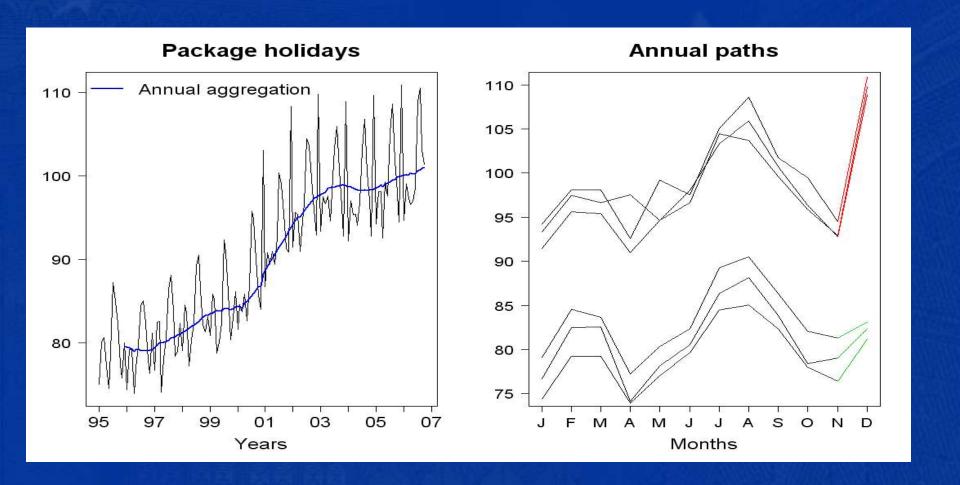
fish

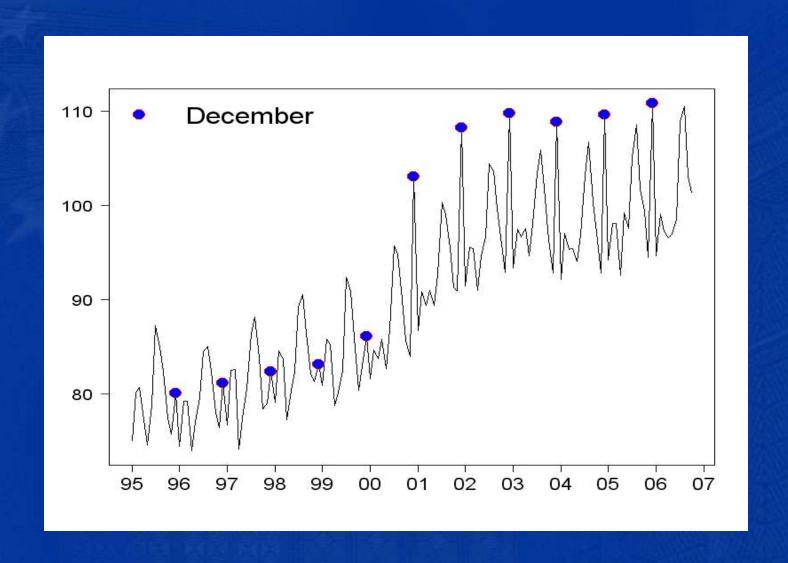
Default critical values for the detection of outliers

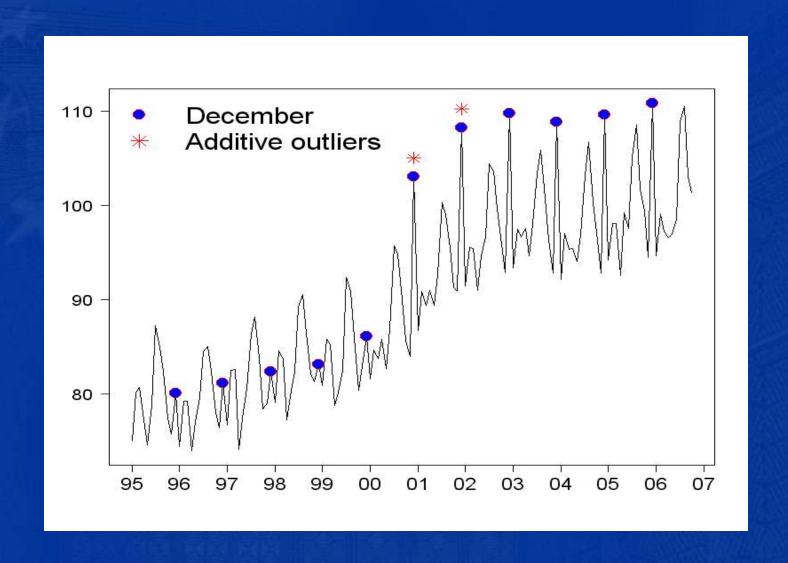
Number of observations	36	72	144	312
X-12-ARIMA	3.55	3.73	3.89	4.04
TRAMO	3.00	3.10	3.24	3.66

- The detection outliers should be specified in order to have a reasonable distinction between the seasonal component and the irregular component of a series.
- Forecast with ARIMA models the last observations are the most relevant.

Summary I


- ⇒Energy price index. No evidence suggesting seasonal adjustment.
- ⇒Unprocessed food. Stable seasonal pattern in the components will be adjusted.
- →Outliers. Significant outliers will remain part of the seasonally adjusted series for the energy index and also in fruit and vegetables.
- →Methods. By comparing the current methodology with TRAMO/SEATS for the unprocessed food index, as far as smoothness and stability is concerned X-12-ARIMA showed sensible performance.


Summary II


⇒Direct and indirect approaches.

Due to potentially higher uncertainty in estimating seasonal factors on a more detailed level,

practical considerations suggest using the indirect approach only if clear advantages. Systematic discrepancies are not found for the unprocessed food index.

- A level shift in the seasonal sub-series for December can be detected.
- Standard procedures do not detect this type of breaks and will remain, to a large extent, in the seasonally adjusted series.
- The treatment of this outlier has implications in the selection of the ARIMA model.
- By including the seasonal break Easter and trading day remain significant.