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Abstract

The Clark model is an unobserved components model consisting of a trend and a cycle compo-

nents. The former is a random walk with stochastic drift where the effect of shocks is permanent,

while the latter component is driven by a stationary process characterized by the transitory effect

of shocks. In Clark’s model the effect of shocks is symmetric throughout the phases of the cy-

cle. Stylized facts reveal the presence of asymmetries where long and smooth expansion periods

alternate with sharper and shorter recession periods. In order to account for these asymmetries,

researches have drawn attention to models where changes of regime are modelled endogenously as

a Markov process. In this thesis, we set up a general framework that encompasses reference models

analyzed in the literature. We adopt Clark’s structural time series model and extend it allowing for

Markov switching regimes in the components and the parameters of the model. We illustrate the

contribution from dynamic econometric models to the empirical analysis of gross domestic product

time series. In a first stage, the analysis is carried out separately for a trend-cycle unobserved

components model and a Markov switching regime model. Next, we conduct two applications to

compare results based on exact and approximate maximum likelihood in the context of the Clark

model with Markov switching regimes. Upon this framework, we analyze further empirical issues

that have been addressed separately in the literature: measure the persistence of shocks and es-

timation of the contemporaneous correlation between components. Finally, the presence of two

transitory components is discussed in a model with asymmetries in the trend.
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1 Introduction

The business cycle has long been studied in economic theory and empirical works. The work by

Burns and Mitchell (1946) is widely cited as a pioneering research in the field. Broadly speaking,

the analysis of the business cycle involves the detection of turning points indicating the beginning

and the end of recession and expansion periods. The analysis is carried out upon observation of a

macroeconomic variable measuring economic activity, e.g., gross domestic product (GDP). Bry and

Boschan (1971) developed a procedure for the detection of turning points in a smooth signal. The

procedure also enforces certain censoring rules related to the minimum duration of the phases. More

recently, Harding and Pagan (2002) developed a procedure for the location of local maxima and

minima subject to censoring rules specified by the user. The dissection of the cycle as proposed in the

reference paper provides a descriptive analysis of the business cycle: duration, amplitude and strength

of the phases as well as certain type of asymmetries measured as the ratios between the duration and

amplitude of consecutive phases.

The searching algorithms mentioned above rely on a smooth input series often obtained by means

of a filtering procedure. Some of these filters, such as the Hodrick-Prescott and the Baxter-King,

are well known in economics, see Hodrick and Prescott (1997); Baxter and King (1999); Kaiser and

Maravall (2001). Other filters known in several fields of engineering as Butterworth filters are used

for the analysis of economic data as well, see Pollock (2000); Gómez (2001).

Beveridge and Nelson (1981) devised a procedure for the decomposition of a non-stationary time

series into a permanent and a transitory component. The components are obtained upon the selection

of an autoregressive moving average model for an integrated process (ARIMA). The interpretation of

the Beveridge-Nelson (BN) decomposition is a matter of debate. See Morley (2007) and references

therein for a survey on this topic. One interpretation regards the BN trend as an estimate of the

trend in an unobserved component model. Another interpretation considers the BN trend as the

permanent component of an integrated process. According to the first interpretation, the BN trend is

an estimate and, hence, an unobserved component. In the second explanation, the interpretation of

the BN trend is attached to the definition of an integrated process and is considered observable. The

Wiener-Kolmogorov theory for the decomposition of an ARIMA model selected for the observed data

has been shown to be useful for a wider range of practical purposes. See Burman (1980); Gómez and

Maravall (2001) for an application of the methodology in the context of seasonal adjustment.

Clark (1987) proposed a formal econometric specification for a permanent (trend) plus transitory

(cycle) model in an unobserved components framework. Given a state space representation of the

model, it can be estimated by maximum likelihood by means of the Kalman filter as explained in
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Harvey (1989). Harvey and Jaeger (1993) explore empirically the performance of different detrending

techniques. They find some limitations in the Hodrick-Prescott filter and ARIMA modelling techniques

and claim that the modelization by components; namely, trend, cycle, seasonal and irregular, is a

convenient approach to capture the stylized facts observed in macroeconomic time series. In Clark’s

model, the trend component is a random walk with stochastic drift and the transitory component is

modelled as a stationary autoregressive process. For the sake of clarity, it is worth making at this

point a remark about what is usually understood by trend component and cyclical component. The

former refers to the long-run evolution of the data, whereas the latter is typically related to cycles that

are 1.5-12 years long, following Burns and Mitchell (1946). In a Fourier decomposition of the series,

the trend component is represented by cycles of frequencies close to zero. Real data do not contain a

whole trend cycle (the period of a cycle of frequency zero is infinite). We can observe a few cycles of

frequencies related to the business cycle.

In Clark’s model the effect of shocks is symmetric throughout the phases of the cycle. Nowadays

there are two major stylized facts broadly accepted: 1) the business cycle consists of relatively long and

smooth expansion periods alternating with sharper and shorter recession periods, 2) the amplitude of

a recession is correlated with the following expansion, while the amplitude of an expansion is uncor-

related with the amplitude of the subsequent contraction. In order to account for these asymmetries,

researches –following the work in Hamilton (1989)– have drawn attention to models where changes of

regime are modelled endogenously as a Markov process. In this thesis, we extend the traditional struc-

tural time series model advocated in Clark (1987) considering Markov switching regimes. Following

this direction, two major models are found in the literature: the generalized Hamilton model, Lam

(1990), and Friedman’s plucking model, Kim and Nelson (1999a). We set up a general framework that

encompasses both models. We adopt Clark’s structural time series model and include the possibility

of asymmetries in the components. The models of the reference papers cited above are extended with

Markov switching parameters.

Typically, the components in a structural time series model are assumed to be uncorrelated. This

assumption achieves identification of the parameters of the model. In the context of Clark’s model,

Morley et al. (2003) show that, under certain conditions, the restriction of no correlation between

the disturbance terms in the permanent and transitory components is not necessary for identification.

Sinclair (2007) estimates the covariance between components in the permanent plus transitory model

with asymmetries in the transitory component. We will explore this issue in a model with asymmetries

in the trend and Markov switching variances and covariance.

The remaining of the thesis is organized as follows. Section 2 introduces unobserved components
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models. Markov Switching models are introduced in Section 3. The reference setting in this thesis

combines the previous two methodologies. Our benchmark model and the estimation procedure is

given in Section 4. Empirical results are described in Section 5. Section 6 concludes.

2 Unobserved Components Models

In this section we introduce Clark’s unobserved components model for business cycle analysis and

discuss maximum likelihood estimation.

2.1 A Permanent plus Transitory Components Model

Structural time series models and state space methods are broadly used for the decomposition of time

series into unobserved components. In the spirit of the model proposed in Clark (1987), we define a

general model that consists of a permanent component (trend) and a transitory component (cycle).

The model is specified as follows:

yt = nt + xt + ut , ut ∼ NID(0, σ2
u) , (1)

nt = gt−1 + nt−1 + vt , vt ∼ NID(0, σ2
v) , (2)

gt = gt−1 + wt , wt ∼ NID(0, σ2
w) , (3)

xt =
k∑
i=1

φixt−i + et , et ∼ NID(0, σ2
e) , (4)

for t = 1, 2, ...n. The roots of the polynomial φ(L) = 1 − φ1L − φ2L
2 − ... − φkL

k, where L is the

lag operator and k is the AR lag order, lie outside the unit circle. Typically, the disturbance terms,

ut, vt, wt and et, are considered mutually uncorrelated. We will further discuss this issue shortly.

The trend component, nt, is a random walk with drift, where the drift follows in turn a random

walk. If σ2
w is set equal to zero, the trend is a random walk with deterministic drift equal to g0. When

both σ2
v = σ2

w = 0, the component nt is a deterministic intercept equal to n0 +g0 for all t. The cyclical

component, xt, is a stationary autoregressive (AR) process with periodicity determined by the roots

of the polynomial φ(L). Given a possibly complex root r = a + bi, with i =
√
−1, the modulus of

the root is m =
√
a2 + b2. The frequency of the cycle related to the polynomial φ(L) is arccos(1/m).

Alternatively, a trigonometric specification based on sine-cosine waves can be defined as:

xt = ρ (α cosλ t+ β sinλ t) + et .

The amplitude of the waves is
√
α2 + β2 and the phase is tan−1 β/α. The parameter ρ lies within the

(0, 1) interval. Following Harvey (1989), the trigonometric representation given above can be written
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as an AR(1) process as follows:

xt = ρ
(
xt−1 cosλ+ x∗t−1 sinλ

)
+ et , et ∼ NID(0, σ2

e) (5)

x∗t = ρ
(
−xt−1 sinλ+ x∗t−1 cosλ

)
+ e∗t , e∗t ∼ NID(0, σ2∗

e ) , (6)

where λ is the frequency of the cycle with period 2π/λ. The term x∗t appears only for the specification

of the cyclical component as a recursive process and is not relevant in itself. We will consider σ2
e = σ2∗

e .

The state space representation of the structural model introduced in this section is given in Appendix

A.1.

2.2 Identification of Model Parameters

It is illuminating to rewrite the model in equations (1)-(4), for instance with k = 2, taking the

stationarity operator, (1 − L)2 ≡ ∆2, and multiplying both sides by φ(L) = (1 − φ1 L − φ2 L
2). For

simplicity, we omit the disturbance term, ut, in the observation equation:

φ(L)∆2yt = φ(L)wt−1 + φ(L)∆vt + ∆2et︸ ︷︷ ︸
εt+θ1 εt−1+θ2 εt−2+θ3 εt−3

. (7)

The previous expression is known as the reduced form of the structural model and is an autoregressive

(AR) moving average (MA) process of orders 2 and 3, respectively for the AR and MA parts, for a

second order integrated time series, I(2): ARIMA(2,2,3) model. The lagged disturbance terms in the

right hand side of equation (7) can be written as an MA(3) process for a single random variable, εt,

by Granger’s representation lemma.

The unobserved components model and the ARIMA model have the same autocovariance structure.

Thus, equating the non-zero autocovariances from both representations, a relationship between the

parameters in both models is obtained. Despite the existence of a relationship between the parameters

of both equivalent models, a solution to the system of equations is not feasible in this case. It can

be shown that in the model above there are four non-zero autocovariances. Hence, there are four

equations for six unknown parameters in the structural model: σ2
v , σ

2
w, σ

2
e , σvw, σve and σwe. The

parameters of the structural model are not identified. A common identifying assumption is that the

innovations in the structural model are mutually uncorrelated, being the covariances σv,w, σv,e and

σw,e equal to zero. Notice that this assumption leads to three unknown parameters (the variances)

for four non-zero autocovariances and, hence, the model is overidentified.

Similarly, it can be shown that the corresponding reduced form for the model where the trend

follows a random walk with deterministic drift (σ2
w = 0) is an ARIMA(2,1,2) model. Furthermore,

this structural model with σwe 6= 0 is exactly identified. See Morley et al. (2003) for details.
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2.3 Maximum Likelihood Estimation

The linear model given in equations (1)-(4) can be estimated by maximum likelihood (ML) using the

Kalman filter. The likelihood of the set of parameters θ = (σ2
v , σ

2
w, σ

2
e , φ1, φ2), given the vector of

observed data, y, is:

L(θ|y) =
n∏
t=1

[
1√

2πHt
exp

(
− η2

t

2Ht

)]
, (8)

where Ht is the variance of the prediction error ηt defined below. The likelihood function can be

maximized to obtain estimates of the parameters. In practice, the logarithm of the likelihood is

optimized for computational stability, among other reasons.

The Kalman filter is a recursive procedure that allows us to compute the contribution of each

observation to the likelihood. In the final step we get the likelihood of the parameters of the model given

the entire data set. The classical approach assumes that the sample data are distributed according

to a Normal distribution. The expected mean for an observation at time t is the forecast of that

observation conditional on all the past information with the variance of the corresponding prediction

error. We use the following notation to state this point: yt ∼ N (yt|t−1,Ht), where Ht is the variance

of ηt = yt − yt|t−1.

Given the true values for the parameters of the Normal distribution, the expectation for the next

period can be computed. In practice, we do not know those parameters that identify the distribution

and need to be estimated. For a Normal distribution, the goal is to estimate its mean and variance. The

Kalman filter computes expected values of the unobserved components from t = 1, 2, ..., n together with

the prediction error and its variance. They are updated as a new observation is made available at each

iteration. Following the equations given below, the procedure of the algorithm can be implemented

for a wide range of models for which a state space representation exists. A state space representation

of a general dynamic linear model consists of a measurement and a transition equation:

Measurement equation: yt = Zαt + εt ,

Transition equation: αt = Fαt−1 + ζt ,
(9)

where  εt

ζt

 ∼ NID

  0

0

 ,

 R 0

0 Q

  .

The state vector αt is of dimenstion K × 1 and the matrix F is of dimension K ×K. The Kalman

filter iterates the following equations for t = 1, 2, ..., n:
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Forecast

αt|t−1 = Fαt−1|t−1 , expectation conditional on information up to time t− 1.

Pt|t−1 = FPt−1|t−1F
′ +Q , conditional variance covariance matrix of αt|t−1.

ηt|t−1 = yt − Zαt|t−1 , prediction error.

Ht|t−1 = ZPt|t−1Z
′ +R , conditional variance of the prediction error ηt|t−1.

Kt = Pt|t−1Z
′H−1

t|t−1 , Kalman gain. (10)

Update

αt|t = αt|t−1 +Ktηt|t−1 , expectation conditional on information up to time t.

Pt|t = Pt|t−1 −KtZPt|t−1 , conditional variance covariance matrix of αt|t.

Initial values for time t = 0 are required to start the recursions. If relevant information is available, the

practitioner may propose some tentative values for starting the filter. In order to avoid the effect of

this choice, the contributions to the likelihood of the first observations can be omitted. Alternatively,

the initial values can be included in the set of parameters to be estimated by ML together with the

remaining parameters of the model. A state space representation for our reference model is given in

Appendix A.1.

The likelihood function –evaluated by means of the Kalman filter– can be optimized by numerical

optimization given a initial set of values for the parameters of the model. We use the BFGS (Broyden,

Fletcher, Goldfarb and Shanno) numerical optimization algorithm.

Finally, an estimate of the state vector vector and its covariance matrix conditional on the whole

sample information can be obtained as follows:

αt|T = αt|t + Pt|tF
′P−1
t+1|t

(
αt+1|T − Fαt|t

)
,

Pt|T = Pt|t + Pt|tF
′P−1
t+1|t

(
Pt+1|T − Pt+1|t

)
P−1
t+1|t

′
FP ′

t|t ,

for t = n − 1, n − 2, ..., 1. These equations are known as the smoothing equations. The initial values

for the smoothing, t = n, are obtained from the last iteration of the filtering equations in (10).

3 Markov Switching Models

In this section we introduce a non-linear autoregressive model where the mean undergoes changes of

regime. The transitions from one regime to another are modelled as a first order Markov switching

process. The model introduced in this section is intended to capture asymmetries in the effect of
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shocks from each regime. It is especially relevant for the analysis of the business cycle, since the

stylized facts indicate the presence of asymmetries between recession periods (short and strong) and

expansion periods (longer and smoother).

Hamilton (1989) proposed the following autoregressive process with switching mean for the growth

rates of the gross domestic product:

yt − µSt =
p∑
l=1

φl(yt−l − µSt−l
) + εt , εt ∼ NID(0, σ2) , (11)

µSt = µ1S1t + µ2S2t ,

where Sjt = 1 if St = j and Sjt = 0 otherwise and St is a first order Markov process with transition

probabilites:

Pr(St = j|St−1 = i) = pij , i, j = 1, 2 .

The roots of the polynomial φ(L) = 1− φ1L− φ2L
2 − ...− φpL

p lie outside the unit circle. Although

the model above can be cast in state space form, as it is non-linear the Kalman filter cannot be used to

compute the likelihood function. Forward-backward type algorithms have been developed in several

fields of engineering for the estimation of hidden Markov models. Hamilton (1989) developed an

algorithm for the estimation of Markov switching models by maximum likelihood. A particularity of

the Hamilton filtering algorithm is that it deals with serial correlation. In particular, the likelihood of

a general AR model of order p with Markov switching parameters can be computed. Time dependent

data are common in macroeconomic time series and lagged dependent variables are often included as

explanatory variables. In our case, a general AR model of order p will be estimated.

In this context, maximum likelihood estimation involves two main steps that are iterated for the

entire sample from t = 1, 2, ..., n given some initial values for t = 0: 1) computation of the conditional

densities of the data given the parameters at each regime; 2) computation of the filtered probabilities

of each regime. As we will see, the likelihood function is a weighted average of the conditional densities

where the weighting factors are the probabilities obtained in a second step.

The joint density of the contemporaneous data yt and the Markov process St along with p lags

conditional on information up to time t− 1 is given by:

f (yt, St, St−1, ..., St−p|ψt−1)

= f (yt|St, St−1, ..., St−p)× Pr (St, St−1, ..., St−p|ψt−1) .

The marginal distribution of the data can be obtained integrating the vector (St, St−1, ..., St−p) out of
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the joint density:

f (yt|ψt−1) =
2∑

St=1

2∑
St−1=1

· · ·
2∑

St−p=1

f (yt, St, St−1, ...St−p|ψt−1) (12)

=
2∑

St=1

2∑
St−1=1

· · ·
2∑

St−p=1

f (yt|St, St−1, ...St−p, ψt−1)

× Pr (St, St−1, ...St−p|ψt−1) .

We can see that the marginal distribution of the data given the past information is a weighted average

of 2p+1 conditional densities. Each conditional density is related to a possible path of the Markov

process St from period t to t− p.

Under the assumption of Gaussian disturbances εt, the conditional distribution takes the expres-

sion:

f (yt|St, St−1, ...St−p, ψt−1)

=
1√

2πσ2
exp

(
−
(
(yt − µSt)−

∑p
l=1 φl(yt−l − µSt−l

)
)2

2σ2

)
.

The log-likelihood function is obtained adding the contributions given in equation (12) for all the

observations:

log-likelihood =
n∑
t=1

log f (yt|ψt−1)

and can then be maximized for the set of parameters θ = (p11, p22, µ1, µ2, φl, σ
2).

For the maximum likelihood procedure to be feasible, the weighting terms Pr (St, St−1, ..., St−p|ψt−1)

in equation (12) need to be computed. The filtering algorithm developed in Hamilton (1989) to this

end is described in Appendix A.2. Initialization of the filter can be done using the steady state prob-

abilities as indicated in the Appendix. If the filter is run for evaluation of the likelihood function

and maximum likelihood estimation, the optimization algorithm must be started with a set of initial

parameter values (among them p11 and p22) proposed by the practitioner.

Markov switching models have been shown to be useful for the analysis of macroeconomic data: an

interpretation relevant for the economic analysis may be often attached to each regime, for instance

as recession and expansion periods; Kaufmann (2002) investigates on the presence of a potential

asymmetric effect in the monetary policy over the business cycle; Chauvet et al. (2002) study the

dynamic of unemployment and the relationship with the phases of the business cycle. For a review of

further empirical research in this field see volume 27 issue number 2 published in Empirical Economics

in the year 2002.
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4 Structural Time Series Models with Markov Switching Regimes

The combination of the techniques described in previous sections leads us to the ultimate aim of this

thesis: specification and implementation of a procedure for the estimation of a structural time series

model with a permanent trend component and a transitory cyclical component subject to changes in

regime. The model in equations (1)-(4) is extended accounting for asymmetries in the components

through a Markov switching variable as well as changes in regime in the variances of the innovation

terms. There is precedent in the literature for these specifications, see Kim and Nelson (1999b) for a

review. The state space representation that we follow for the general model is given in Appendix A.1.

This representation provides a unified approach for the reference models analyzed in the literature as

well as further versions that we explore below.

4.1 Restricted Versions of the Clark Model with Markov Switching Regimes

The implementation of the general setting employed in this thesis encompasses two particular models

found in the literature: Lam’s and Friedman’s Plucking model, as well as other extensions required

for further empirical questions that we will address in Section 5.

4.1.1 Lam’s generalized Hamilton model

The model advocated in Lam (1990) is a generalized version of Hamilton’s model, see Hamilton (1989).

The original paper uses the first differences of the data as the dependent variable and a representation

different from the state space form given in Appendix A.1. In our general structural model, we write

Lam’s model as a trend component modelled as a random walk with a Markov switching, τSt , plus a

transitory component, xt:

yt = nt + xt + ut , ut ∼ NID(0, σ2
u) (13)

nt = nt−1 + τ0 + τ1St + vt , vt ∼ NID(0, σ2
v) (14)

xt =
k∑
i=1

φixt−i + et , et ∼ NID(0, σ2
e) (15)

where St is an indicator variable for the regime governing the trend component. It takes the value

0 for the first regime and 1 for the second regime and is modelled as a first order Markov process

with probabilities Pr(St = j|St−1 = i) = pij for i, j = 1, 2. The original model does not include a

disturbance term in the trend component, vt, since the dependent variable is the first differences of the

data. The innovation ut in the observation equation is neither considered there. In our representation,

to account for a larger variance in the non-differenced series, we will include at least one of these

disturbance terms besides the disturbance in the transitory component, et.
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In the generalized version of Hamilton’s model the entire history of the Markov process St is

involved in each state observation at time t. This fact is pointed out in Lam (1990) by rewriting the

model in the stationary form:

∆yt = τ0 + τ1St + ∆xt .

Solving for xt by backwards substitutions yields

xt =
t∑
t=1

yt − τ0t− τ1

t∑
t=1

St + x0 ,

where we can see that the sum of the Markov process over all periods up to time t shows up in the

expression for the cyclical component at time t, xt. The algorithm for the estimation of the model by

maximum likelihood has to deal with this issue. Hamilton’s algorithm involves the joint distribution

of the series at time t and the contemporaneous and k lagged observations of the Markov process,

instead. Lam (1990) develops an algorithm where, treating
∑t

t=1 St as an additional state variable,

exact maximum likelihood can be carried out.

Both Hamilton’s and Lam’s model contain a unit root. However, by construction of the latter

model, the unit root appears in the trend component. Given the stationary representation of the AR

process, the shocks to the cyclical component are transitory.

4.1.2 Friedman’s plucking model

Kim and Nelson (1999a) proposed a model where the asymmetric behaviour is attached to the transi-

tory component. We describe this model for completeness as it is a particular case of the general state

space model given in Appendix (A.1). In our empirical analysis, we selected other models described

in this section which showed a sensible performance for our data set. Kim and Nelson (1999a) moti-

vate the model by relating it to Milton Friedman’s economic model characterized by the observation

that: the amplitude of a recession is strongly correlated with the subsequent expansion whereas the

amplitude of an expansion is not correlated with the next recession. The model is defined below:

yt = nt + xt + ut , ut ∼ NID(0, σ2
u) , (16)

nt = gt−1 + nt−1 + vt , vt ∼ NID(0, σ2
v) , (17)

gt = gt−1 + wt , wt ∼ NID(0, σ2
w) , (18)

xt =
k∑
i=1

φixt−i + δ0 + δ1St + et , et ∼ NID(0, σ2
e) , (19)

where St is an indicator variable for the regimes modelled as a first order Markov process.
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The model is intended to mimic the hypothesis that recessions are driven by transitory shocks

while positive shocks are permanent. Kim and Nelson (1999a) also point out the fact that for σ2
κ = 0

and δ0 +δ1St < 0 there is an upper limit to the trend, which agrees with the maximum feasible output

discussed in Friedman’s model.

4.1.3 Markov switching variances

Originally, the interest to include a Markov switching variable for business cycle analysis relied on

the fact that it provides a measure of changes in the components during recession and expansion

periods. McConnell and Pérez-Quirós (2000) have investigated the question whether the volatility

of the business cycle has remained constant throughout time. The findings in the mentioned paper

suggest a natural extension in our structural model by allowing for Markov switching variances in

some of the disturbance terms. Changes in regime in the variance of the components can be specified

as:

σ2 = σ2
1Sjt + σ2

2Sjt , (20)

where Sjt takes the value 1 when the j-th regime is governing the series and 0 otherwise. We consider

two regimes, j = 1, 2. We do not address the question about changes in volatility in the business

cycle, however, our empirical results in Section 5 show statistical evidence for structural breaks in the

variance of GDP series using a model with switching variance. Some models performed better when

some of the variances were allowed to change with regime. As we will see, we will also consider the

possibility of a regime dependent covariance between the trend and the cycle components.

4.1.4 Switching damping factor

In applied works, a large estimate for the persistence of shocks in the transitory cycle is often obtained.

In the AR representation, the sum of the AR coefficients is taken as a measure of persistence. In the

trigonometric representation, the damping factor can be taken as such measure. We estimate the

persistence parameter in the context of Markov switching models. The question that we address

is whether there is empirical evidence for a lower persistence parameter in one regime compared to

the other regime. We take the trigonometric representation of the cycle since it requires only one

additional switching parameter, ρSt , instead of k switching AR coefficients. We specify the following
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model:

yt = nt + xt + ut , ut ∼ NID(0, σ2
u) , (21)

nt = nt−1 + τ0 + τ1St , (22)

xt = ρSt xt−1 cosλ+ ρSt x
∗
t−1 sinλ+ et , et ∼ NID(0, σ2

e,St
) , (23)

x∗t = −ρSt xt−1 sinλ+ ρSt x
∗
t−1 cosλ+ e∗t , e∗t ∼ NID(0, σ2∗

e,St
) . (24)

The damping factor varies from one regime to the other: ρSt = ρ1Sjt+ρ2Sjt, where Sjt is an indicator

variable that takes the value 1 when the j-th regime is governing the series and 0 otherwise. We

consider two regimes, j = 1, 2.

4.1.5 Two transitory components

Motivated by the findings obtained while analyzing the GDP series for France, we considered the

presence of two different transitory components. We selected the model defined below for the GDP

series of France. It bears resemblance to Lam’s model in that there is switching variable in the

trend component. However, no difference is taken to the data, a model for the trend is given (a

deterministic trend with switching) and two transitory components in the trigonometric representation

are estimated:

yt = nt + xt + ut , ut ∼ NID(0, σ2
u) , (25)

nt = nt−1 + τ0 + τ1St , (26)

x
(1)
t = ρ(1)x

(1)
t−1 cosλ(1) + ρ(1)x

(1)∗
t−1 sinλ(1) + e

(1)
t , et ∼ NID(0, σ2 (1)

e ) , (27)

x
(1)∗
t = −ρ(1)x

(1)
t−1 sinλ(1) + ρ(1)x

(1)∗
t−1 cosλ(1) + e

(1)∗
t , e

(1)∗
t ∼ NID(0, σ2 (1)∗

e ) , (28)

x
(2)
t = ρ(2)x

(1)
t−1 cosλ(2) + ρ(2)x

(2)∗
t−1 sinλ(2) + e

(2)
t , et ∼ NID(0, σ2 (2)

e ) , (29)

x
(2)∗
t = −ρ(2)x

(1)
t−1 sinλ(2) + ρ(2)x

(2)∗
t−1 cosλ(2) + e

(2)∗
t , e

(2)∗
t ∼ NID(0, σ2 (2)∗

e ) . (30)

4.1.6 Correlated components

In subsection 2.2 we discussed the identification of the parameters in Clark’s model. We explained

that the conventional assumption for identification is to consider mutually uncorrelated components.

We also discussed that, as Morley et al. (2003) show, the model with a random walk with deterministic

drift for the trend component plus a transitory component is an ARIMA(2,1,2) model and is exactly

identified. An identifying assumption σwe = 0 commonly considered in practical applications is not

necessary in this model.
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Sinclair (2007) estimates the covariance between the components in the permanent plus transitory

model with asymmetries in the transitory component. We will estimate the covariance between the

trend and cycle components in two models. In both models the transitory component is estimated

in the trigonometric representation. The first model considers Markov switching variances in both

components as well as switching covariance:

yt = nt + xt (31)

nt = nt−1 + vt , vt ∼ NID(0, σ2
v,St

) , (32)

xt = ρxt−1 cosλ+ ρx∗t−1 sinλ+ et , et ∼ NID(0, σ2
e,St

) , (33)

x∗t = −ρxt−1 sinλ+ ρx∗t−1 cosλ+ e∗t , e∗t ∼ NID(0, σ2∗
e,St

) , (34)

with σev,St 6= 0. The switching variances were defined in subsection 4.1.3, the switching covariance is

defined similarly. In the second model the variances and the covariance are not regime-dependent, a

switching variable in the trend component, τSt , is included instead:

yt = nt + xt (35)

nt = nt−1 + τ0 + τ1St + vt , vt ∼ NID(0, σ2
v) , (36)

xt = ρxt−1 cosλ+ ρx∗t−1 sinλ+ et , et ∼ NID(0, σ2
e) , (37)

x∗t = −ρxt−1 sinλ+ ρx∗t−1 cosλ+ e∗t , e∗t ∼ NID(0, σ2∗
e ) , (38)

with σev 6= 0.

4.2 Maximum Likelihood Estimation

The linear model underlying Clark’s model can be estimated by maximum likelihood (ML) using the

Kalman filter. For the extended non-linear model with Markov switching regimes, other algorithms

have been developed. Lam (1990) developed an algorithm for exact ML when asymmetries are mod-

elled in the trend component. Kim (1994) develops an algorithm for the estimation of a general model

with Markov switching regimes given in a state space representation by approximate ML. This method

is attractive for our general model, since it allows to estimate different versions of it.

4.2.1 Maximum likelihood and Kim’s filtering algorithm

Kim’s filtering algorithm is built upon the Kalman and Hamilton filters. Here, we sketch the imple-

mentation of the algorithm:
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1. Run the Kalman filter for all the possible paths of the Markov process in the period t and t− 1,

St = j, St−1 = i with i, j = 1, 2, ...,M and M the number of regimes. There are M2 paths to

consider leading to M2 state values and variances.

2. Run the Hamilton filter and compute the weighting terms Pr(St, St−1|ψt−1). The variable ψt−1

denotes the set of information available up to time t− 1.

3. Collapse the resulting M2 state values and the corresponding variance covariance matrix (for

each path St = j, St−1 = i with i, j = 1, 2, ...,M) into M -vectors according to the following

approximations:

α
(j)
t|t =

∑M
i=1 Pr (St = j, St−1 = i|ψt)α(i,j)

t|t

Pr (St = j|ψt)
,

P
(j)
t|t =

∑M
i=1 Pr (St = j, St−1 = i|ψt)

(
P

(i,j)
t|t +

(
α

(j)
t|t − α

(i,j)
t|t

)(
α

(j)
t|t − α

(i,j)
t|t

)′)
Pr (St = j|ψt)

.

The Kalman and Hamilton filters are initialized and the above procedure is run for t = 1, 2, ...., n. At

each iteration the contribution of each observation to the likelihood is obtained through the marginal

density of the observation given past information , f(yt|ψt−1). The log-likelihood function given the

whole sample data is obtained in the last iteration as:

log-likelihood = log(f(y1, y2, ..., yn)) =
n∑
t=1

log (f(yt|ψt−1))

An optimization algorithm is then used to find the parameter values that maximize the previous

log-likelihood function.

4.2.2 Exact and approximate maximum likelihood

Previous to the application of Kim’s algorithm for the empirical analysis, we assess the performance

of the procedure comparing results with two reference empirical applications for which procedures for

exact ML exist. We estimate Clark’s and Lam’s model for the US GDP series used in the reference

papers. Table 1 summarizes the comparison between exact and approximate ML.

[Table 1 about here.]

Parameter estimates in Clark’s model are almost identical for both methods. This is not surprising,

since the model can be regarded as a single regime model where the probability of leaving regime 1 is

fixed to 0. The approximations involved in Kim’s algorithm lead to slight differences with the results

in Lam’s model. The log-likelihood is larger when exact ML is carried out, however, there are no
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substantial differences in the implied cycle. Figure 1 shows that the implied cyclical component and

the filtered probabilities of state 1 from both procedures are close to each other.

[Figure 1 about here.]

The difference at the beginning of the sample is presumably due to the fact that in the original

application considered for comparison the initial observations are discarded for computation of the

likelihood function whereas we estimate the initial values of the state vector. The number of observa-

tions used in both cases are the same, nonetheless, and the value of the log-likelihood at the optimal

parameters are comparable. Finally, the variance in the observation equation, σ2
u, is also estimated

despite the original model only includes a variance in the trend component, σ2
v . While the original

application fits the model to the first difference of the data, in the state space representation that

we follow the explanatory variable is the original data. In order to account for a larger variance in

the non-differenced data, a disturbance term is estimated in the observation equation and the trend

component.

We do not claim that the choice of exact or approximate ML is irrelevant, even if results are

reasonably close. The previous exercises are intended to illustrate that, following the framework

introduced above, our implementation allows us to obtain results in close agreement with empirical

results found in the literature. In what follow, we will take the same approach for extended versions

of Clark’s and Lam’s models for which exact ML is not feasible.

5 Empirical Results

In this section the methods described above are applied to a data set consisting of quarterly gross

domestic product (GDP) time series. GDP is defined as the aggregation of the value of all goods

and services produced less the value of any goods or services used in their creation. It is commonly

interpreted as a measure of economic activity and is a reference for analyzing the business cycle.

[Table 2 about here.]

The data set is described in Table 2. The GDP series in the data are measured in the national

currency at constant prices. Unless otherwise stated, the data are transformed into the logarithmic

scale. The series are obtained from the national accounts: the ESA95 data base for the European

countries is available at http://sdw.ecb.europa.eu and the US Economic Accounts data base is

available at http://research.stlouisfed.org/fred2. The series related to the European countries
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are working day and seasonally adjusted and the US GDP is seasonally adjusted annual rate. Sea-

sonally adjustment procedures extract from the series those fluctuations with periodicity lower than

a year that are regularly observed in the data.

We will illustrate and apply the methods discussed throughout the thesis for the GDP data set.

Firstly, we illustrate the contribution from dynamic econometric models to the empirical analysis

separately for the unobserved components model and Markov switching regime models. Secondly, we

explore further empirical issues in the context of the Clark model with Markov switching regimes;

namely, the presence of switching damping factor in the cyclical component, contemporaneous corre-

lation between the innovation terms and a model with two transitory components.

The required computations were implemented in the R statistical language R Development Core

Team (2006).

5.1 Structural Time Series Models

Table 3 shows maximum likelihood parameter estimates in the trend plus cycle structural model with

the trigonometric representation for the cycle, equations (1)-(2) and (5)-(6). The variance of the

disturbance term ut in the observation equation is fixed to 0. The inferred filtered cycles are shown

in Figure 2.

[Table 3 about here.]

[Figure 2 about here.]

In the series FR and UK, the value zero is included within a two-standard-error interval around

the estimated standard deviations for the level and the slope, σv and σw. The trend is closer to a

deterministic pattern in these series. The damping factor ρ is estimated to be close to unity in all

cases except NL. The transitory component in the series NL is not reliably estimated, as Figure 2 also

suggests. The estimated frequency in the series UK is the lowest and entails a cycle with a period too

long (81 quarters) for it to be interpreted as a business cycle. In the series FI, FR and ES a cycle

around 10 years long is identified. A shorter cycle, 5 years long, is identified for US.

[Table 4 about here.]

[Figure 3 about here.]

Table 4 reports parameter estimates in the trend plus cycle structural model with a stationary

AR(2) process for the cycle, equations (1)-(4). The variance of the disturbance term ut in the obser-

vation equation is fixed to 0. The inferred filtered cycles are shown in Figure 3. The estimated cycle
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in the series FR remains similar to that obtained using the trigonometric representation of the cycle.

The estimation of the cycle in the series NL does not improve: both estimates are very similar, see

Figures 2 and 3, and different phases of the cycle cannot be reliably identified. The cycle estimated

for US replicates the results obtained in other works using the same specification, see for instance

Kim and Nelson (1999b, Chapter 3), and are updated for a longer sample period. The estimate of

the cycle for UK is noisy and not satisfactory using this specification. Looking at the major episodes:

expansion in the 1960s, recession in the beginning of the 1980s and 1990s and subsequent revivals,

the cycle estimated for UK with the trigonometric specification resembles the cycle for US with the

AR(2) specification in the cycle component.

5.2 Markov Switching Models

We fit an autoregressive model with Markov switching in mean (AR-MS) to the data set of GDP

series. Estimates were obtained by maximum likelihood using the Hamilton filter. Some observations

(indicated in Figure 5) were found to be significant additive outliers and dummy variables were included

accordingly. No other type of outliers (level change, temporal change or innovative outliers) were

considered. The order of the AR model was chosen according to the significance of lagged variables

at the 5% level. All the roots of the fitted autoregressive polynomial lie outside the unit circle.

We consider the existence of two regimes. Testing for the null hypothesis of no regime against the

alternative of two regimes is not straightforward. That issue is an instance of a broader subject studied

in the econometric literature that involves inference when a nuisance parameter is not identified under

the null hypothesis. In our context, under the null µ1 = µ2 in model (11), the transition probabilities

pii i = 1, 2 are not identified. As a consequence, the test statistics based on maximum likelihood

do not follow the standard distributions. Some approaches have been studied, see Garćıa (1998) and

references therein for an exposition of the problem. The proposed solutions found in the literature

depend on the specification of the model and none of them appear to be fully satisfactory for practical

purposes. We will focus on the estimation of a MS model and will check the performance of the model

considering the existence of two regimes.

[Table 5 about here.]

Table 5 reports parameter estimates in the AR-MS model. In all cases except FR the mean is

estimated to be negative in the first regime and positive in the second regime. The estimated switching

means are separated by more than two standard deviations in all series except US. This suggests the

interpretation of regime 1 as a recession period and regime 2 as a period of economic expansion. This
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fact is not sufficient to justify this interpretation since recession and expansion periods involve further

economic considerations, among them, the duration of the phases of the business cycle.

The expected duration of each regime i = 1, 2 can be obtained from Table 5 as 1
1−pii

. The expected

durations of regime 1 are: 12, 3, 1, 2, 2 and 3 quarters, respectively for the six series as ordered in

Table 5. Likewise, the expected durations of regime 2 are: 111, 8, 21, 10, 16 and 17 quarters. These

durations agree with the general understanding that the business cycle alternates short recessionary

periods and longer expansion periods.

[Figure 4 about here.]

[Figure 5 about here.]

The graphical analysis of results (Figures 4 and 5) reveals that the link between the fitted regimes

and the interpretation of recession and expansion periods is not clear in some cases. The results for

the series FR, UK and US are closer to the understanding of recession and expansion periods. In

the series FI, high probabilities of regime 1 during the period 1990-1994 appear to be related to a

break in the series in that period. Identification of two regimes in the series NL is not plausible; the

probability p11 is nearly zero and the few observations likely to belong with regime 1 are related to

a few downward peaks in the mean, which remains relatively constant especially at the end of the

sample.

Although not reported, according to the Jarque-Bera test statistic, we found that the hypothesis

of normally distributed residuals cannot be rejected at the 5% significance level in all series except

ES. Considering an AR model without switching mean, the Jarque-Bera test statistic was far beyond

the 5% critical value for the null of normality. An analysis of the series with the program TRAMO

–Gómez and Maravall (1996)– detected different outliers other than additive outliers (level shifts and

temporary changes).

Taking logarithms is a common practice in time series analysis, since it homogenizes the variance

and abates the effect of potential outliers. Indeed, that practice is often recommended in macroe-

conomic time series by the statistical analysis, for instance by means of the range-mean plot. In

the series UK, however, to take logarithms was not supported by that analysis since the pattern of

heteroscedasticity exhibits a decrease in the variance of the series, which is accentuated in the log-

arithmic scale. A further insight into this issue applying the Golfeld-Quandt (GQ) test statistic for

homoscedasticity for different break points raised the question whether a structural change is present

in the series. To investigate this issue, we fit to the series UK an AR model with a two-state Markov

switching variance. We find that the analysis based on the AR-MS model suggests a structural change

in the data.
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[Figure 6 about here.]

Figure 6 displays the growth rates of the UK GDP and the filtered probabilities of regime 1 when

an AR model with a Markov switching both in mean and variance is fitted. We can see that the highest

probabilities of regimes cluster in two periods: the first three quarters of the sample size and the last

quarter of observations, approximately. The estimated variances are 1.339 and 0.068, respectively for

regime 1 and 2. Another possibility we considered is to capture this effect by means of a dummy

variable for the last years of the sample. Alternatively, we considered a dummy in the switching

mean and variance. In this case, different average growth rates and variances in each regime can be

estimated for each period determined in the dummy variable. The switching mean and variance are

specified as follows:

µSt = (µ1 + µ∗1Dt)S1t + (µ2 + µ∗2Dt)S2t ,

σ2
St

= (σ2
1 + σ2∗

1 Dt)S1t + (σ2
2 + σ2∗

2 Dt)S2t ,

where Dt is a dummy variable consisting of zeros in the beginning of the sample and ones for the most

recent years. Neither of the approaches provided conclusive results. In the first case the dummy was

not significant at the 5% level. The large number of parameters involved in the second case made the

optimization procedure relatively more sensitive to the starting values.

A less burdensome approach compared to the selection of dummy variables is to apply the Box-Cox

transformation. It is defined as follows:

ybc =
yκ − 1
κ

, κ 6= 0 ,

where limκ→0 ybc = log(y) and, hence, setting a parameter κ = 0 is equivalent to take logarithms. We

use the Box-Cox transformation with κ = 1 for the series UK. Similar results were observed for the

series US and we set κ = 0.5 to homogeneize the variance of the series. In the other series we follow

a logarithmic transformation. Despite this transformation accounts for an evolving variance rather

than a break, the performance was better than in the dummy approach discussed above and it is

computationally less burdensome. Furthermore, the GQ test did not reject the null of homoscedastic

residuals in the series US. The disadvantage of this approach is that the resulting transformed data

do not have a direct interpretation in terms of growth rates.

The series NL is an interesting case illustrating the ability to capture certain types of non-linearities

by means of the AR-MS model. The program TRAMO indicated the presence of significant outliers,

most of them level shifts and temporal changes. Omitting those regressor variables leads to the

rejection of the null hypothesis of normally distributed residuals. Interestingly enough, the Jarque-
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Bera test statistic for normality turned out to be well below the critical value for the 5% significance

level in a model with a switching mean and one additive outlier for the observation 1979:I.

Leaving out possible interpretations of the regimes, Markov switching models may be a useful tool

for detecting and/or modelling structural breaks and certain type of outliers such as level shifts and

temporal changes broadly found in macroeconomic time series. This conclusion is especially relevant

in the estimation procedure that we followed, where we did not include any explicit constraints in the

parameters (for instance the mean in regime 1 to be lower or greater than in regime 2), therefore, there

is no a priori interpretation of the parameters. The parameters account for any kind of non-linearities

likely to be captured by the Marvov process. We found that, a posteriori, non-linearities detected in

some of the series are in agreement with the understanding of the phases of the business cycle, whereas

in other cases the non-linear model reveals the presence of a structural change or outlier observations.

5.3 Structural Model with Markov Switching Regimes

In what follows, we explore further empirical questions by means of extensions of the standard reference

models. In particular, we estimate a switching damping factor in the cyclical component for the series

FR and US; contemporaneous correlation between the innovation terms is estimated in the US GDP

series and two transitory components are detected in the GDP series for France.

5.3.1 Switching damping factor

The degree of persistence in macroeconomic time series is often sensitive to the inclusion of intervention

variables and the sample period considered. Here, we address this issue by means of a regime-dependent

persistence parameter. A switching variable in the trend and a switching variance in the transitory

component are also considered. We use the trigonometric specification of the transitory component

and consider the damping factor ρ as a measure of persistence. In the AR(2) specification, the sum

of the two AR coefficients is commonly interpreted as a measure of persistence of shocks. Considering

changes in regime using this measure of persistence would entail to estimate two switching parameters

while in the trigonometric specification it simplifies to one switching parameter.

[Table 6 about here.]

Table 6 summarizes the results for the US and FR GDP series. We find that, for the selected

model, a switching damping factor is not plausible in the US GDP series. The parameter estimates

take a value larger than 0.9, being close to unity in both regimes. In the GDP series for France, the
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damping factor is substantially lower in regime 1 than in regime 2. The difference in the parameters

is larger than two times the standard errors.1

5.3.2 Correlated components

We analyze the presence of contemporaneous correlation between the trend and cycle components in

the context of Markov switching models. Table 7 summarizes the results for two models applied to

the US GDP series.

[Table 7 about here.]

The first model, defined in equations (31)-(34), includes two-state Markov switching variances and

covariance. The average durations of each regime implied by the estimated probabilities were not

expected, since they are too short. Nevertheless, we can see that two variances and two covariances

are estimated for each regime. The covariance in regime 1 is relatively different from zero compared

to the estimate for regime 2.

We consider a second model, equations (35)-(38), without switch in the variances and covariance

but a switching variable in the trend component. As expected, this lead to a lower variance in the

trend component. The covariance turns to be negative in this case, although the identification of this

parameter is not fully satisfactory as the relatively large standard error suggests.

[Figure 7 about here.]

The implied cycle and filtered probabilities of regime 2 for model 2 are shown in Figure 7. Official

trough dates reasonably match with our results in most cases except for the recession at the beginning

of 1970, where the second phase of the cycle is stretched compared to the official business cycle dates.

5.3.3 Two transitory components

Here, we explore the plausibility of two transitory components in the GDP of France. In the analysis

of this series, we found that, depending on the model, in some cases a cycle of longer period and of

deterministic nature was detected, whereas in other cases a stochastic cycle of lower periodicity was

detected. Top-left plot in Figure 8 displays the spectral density estimate for the FR GDP series after

removing a linear trend to render stationarity. Two humps are observed. The first one is prominent,

while the second is in the boundary of the 95% confidence bar. We have a further insight into this
1The estimator for the parameter ρ is not normally distributed. As a rule of thumb, we take a two-standard-error

interval.
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issue by jointly estimating two potential transitory components. We specify a model that consists

of a deterministic linear trend with Markov switching and two cyclical components defined in the

trigonometric form. Results are shown in Table 8.

[Table 8 about here.]

The switching parameter related to regime 1 is not well estimated, as the large standard error

indicates. Despite this circumstance, the performance of the model was relatively better than other

tentative models used in the analysis. One of the cycles is purely deterministic (the corresponding

standard deviation tends to zero) with periodicity 2π/0.15 ≈ 42 quarters. The standard deviation

related to the second cycle is different from zero and the periodicity is 2π/0.298 ≈ 21 quarters.

[Figure 8 about here.]

The inferred cycles (Figure 8) resemble those that were individually found in other single cycle

models. Filtered probabilities of regime 1 are also shown in this figure. One cycle of the component

with lower periodicity is completed within half cycle of the other component, approximately. The

highest probabilities of regime 1 closely coincide with a trough in the cycle of higher periodicity,

especially at the beginning of the sample.

6 Conclusions

In this thesis we set up a framework for business cycle analysis by means of a structural time se-

ries model. We adopt Clark’s permanent plus transitory unobserved components model and extend

it with Markov switching regimes in the components and parameters of the model. Our reference

framework encompasses preliminary extensions of Clark’s model found in the literature accounting for

asymmetries in the components.

We discuss approximate maximum likelihood estimation in our non-linear structural time series

model using Kim’s filtering algorithm. We conduct two applications for which exact ML methods

exist and find that results based on our implementation of the approximate ML procedure are close

to those based on exact ML. Then, we go further into the analysis of other versions of the reference

structural model for which exact ML methods do not exist.

We apply Clark’s model to quarterly gross domestic product time series. A cycle around 10 years

long is identified in most of the series. A shorter cycle, 5 years long, is identified for US. The analysis of

the same data in an autoregressive model with switching variance suggests the presence of a structural

break in the GDP series of UK. As a complement to the common practice of considering a switching
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mean, a switching variance in GDP series is found to be relevant. We also find that non-linearities

detected in some of the series are in agreement with the understanding of the phases of the business

cycle, whereas in other cases the non-linear model reveals the presence of a structural change or outlier

observations.

The benchmark model discussed in this thesis provides a unified framework for the analysis of the

business cycle. It makes it possible the selection of different specifications for the study of particular

questions within the same framework. The model is illustrated in the joint context of the unobserved

components model and Markov switching regimes for the GDP series of France and USA.

We investigate empirical questions that have been addressed in the literature separately for struc-

tural and Markov switching models. A model with switching damping factor is estimated for the

GDP of France and USA. Results for the GDP of France suggest the presence of lower persistence of

shocks in the regime where a lower variance is attached to the cyclical component. Contemporaneous

correlation between components is estimated in two different models. The sign of the correlation

varies when correlation is allowed to change between regimes and when it is fixed in a model with a

switch in the trend. Finally, the presence of two transitory components is discussed in a model with

asymmetries in the trend for the GDP of France. A deterministic cycle with periodicity 42 quarters

and a stochastic cycle with periodicity 21 quarters are detected.
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A Appendix

A.1 State Space Representation

A state space representation for the model with a permanent component and a transitory component

in AR form with Markov switching regimes is given by:

yt =
[
1 0 1 0 · · · 0

]



nt

gt

xt

xt−1

...

xt−p+1


+ ut ,



nt
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=
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0

0

0


+
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For the trigonometric representation of the transitory component, equations (5)-(6), we follow the

state space representation:

yt =
[
1 0 1 0

]

nt

gt

xt

x∗t

+ ut ,


nt

gt

xt

x∗t

 =


τSt

0

δSt

0

+


1 1 0 0

0 1 0 0

0 0 ρ cosλ ρ sinλ

0 0 −ρ sinλ ρ cosλ




nt−1

gt−1

xt−1

x∗t−1

+


vt

wt
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 .

A.2 The Hamilton Filter

The weighting terms Pr (St, St−1, ...St−p|ψt−1) are the probability of each one of the possible paths.

They are computed in a two-step prediction-update stage:
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1. Given Pr (St−1 = i, ..., St−p = k) from the previous iteration, at the beginning of the t-th

iteration calculate the probability of each path:2

Pr (St = j, St−1 = i, ..., St−p = k|ψt−1)

= Pr (St = j|St−1 = i, ..., St−p = k, ψt−1)× Pr (St−1 = i, ..., St−p = k|ψt−1)

by the Markov property

= Pr (St = j|St−1 = i)× Pr (St−1 = i, ..., St−p = k|ψt−1) , (39)

for all paths with i, j, k = 1, 2. The Markov property of the first order Markov process St entails

that, conditional on the the process one period backward, St−1, the present St and St−i for i > 1 are

independent and, hence, at time t − 1 all the information about St is contained in St−1. Thus, the

first term is the transition probability of the Markov process.

2. For the update step it is convenient to write the updated set of information ψt as (ψt−1, yt). At

the end of the t-th iteration, the previous joint probability is updated using one additional observation

yt:

Pr (St = j, St−1 = i, ..., St−p = k|ψt−1, yt)

=
f (yt, St = j, St−1 = i, ..., St−p = k|ψt−1)

f (yt|ψt−1)
(40)

= f(yt|St=j,St−1=i,...,St−p=k,ψt−1)Pr(St=j,St−1=i,...,St−p=k|ψt−1)
f(yt|ψt−1) .

The denominator of the previous expression is the marginal density computed according to equation

(12). As the denominator is the sum for all possible paths of the term in the numerator, it has the

effect of a proportionality factor that ensures that the resulting ratio is actually a probability taking

a value in the [0, 1] interval.

It is important notice that although the second term in equation (39) can be decomposed into the

product of transition probabilities, there is no need to go further in the decomposition. At this step,

we can compute a new value of this term integrating St−p out of the expression in equation (40):

Pr
(
St = j, ..., St−p+1 = k′|ψt

)
=

2∑
St−p=1

Pr (St = j, St−1 = i, ..., St−p = k|ψt) .

This value will be used in the next iteration as input for the step in equation (39).
2Recall that in general there are sp+1 paths (where s is the number of regimes or states) and each path consists of

p + 1 observations of the Markov process or state variable.
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Initialization of the filter can be done using the steady state probabilities. For a two-state first

order Markov process, those probabilities are given by:

Pr(S0 = 1|ψ0) =
1− p22

2− p11 − p22
, P r(S0 = 2|ψ0) =

1− p11

2− p11 − p22
.

The series of filtered probabilities are then obtained running the entire procedure –involving equations

(12), (39) and (40)– iteratively from t = p + 1, p + 2, ..., n (with p the AR lag order) for the optimal

parameter estimates using p̂11 and p̂22 as reference to compute the steady state probabilities.
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Table 1: Clark’s and Lam’s model by exact and approximate ML

Clark’s model, equations (1)-(4), is fitted to the US GDP series in the sample period 1952:II-1995:III. Lam’s
model, equations (13)-(15), is fitted to the US GDP series in the sample period 1952:II-1984:IV. Results by exact
maximum likelihood are taken from Kim and Nelson (1999b, Chapter 3) and Lam (1990). The models are fitted
by approximate ML using Kim’s filtering algorithm. Results from exact and approximate ML are close to each
other.

Clark’s model Lam’s model

Exact Approx. Exact Approx.

p11 - - 0.508 0.560

p22 - - 0.957 0.932

σu - - - 0.274

σv 0.0056 0.0056 0.771 0.620

σw 0.0002 0.0002 - -

σe 0.0061 0.0061 - -

τ1 - - -1.483 -0.953

τ2 - - 2.447 1.924

φ1 1.5346 1.5344 1.244 1.391

φ2 -0.5888 -0.5884 -0.382 -0.484

Log-Lik. 578.52 578.54 -174.97 -180.33

Table 2: Quarterly gross domestic product data set

The source data bases are the European system of national accounts ESA95 and US national accounts. The
data for the European countries are measured in millions of euros at constant prices and for USA in billions of
chained 2000 US dollars. The naming convention followed in the source data base for the European countries
is ’ESA.Q.xx.Y.0000.B1QG00.1000.TTTT.Q.N.A’ where ’xx’ is the country code: FI, FR, NL, ES and GB. The
identification code for the US series in the source data base is GDPC96.

Country Span period # obs.

Finland 1975:I-2007:IV 132

France 1978:I-2008:I 121

Netherlands 1977:I-2008:I 125

Spain 1980:I-2008:I 113

United Kingdom 1955:I-2008:I 213

USA 1947:I-2007:IV 244
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Table 3: Parameter estimates in the trend plus cycle model with the trigonometric representation of
the cycle

Cells report parameter estimates in the trend plus cycle structural time series model with the trigonometric repre-
sentation for the cycle, equations (1)-(2) and (5)-(6). The variance of the disturbance term ut in the observation
equation is fixed to 0. The first 21 observations are discarded in the computation of the likelihood. Standard errors
are reported in parentheses. The periodicity of the cycle of frequency λ is 2π/λ quarters. Figure 2 displays the
inferred cyclical components.

Series σv σw σe ρ λ 2π/λ Log-Lik.

FI
0.0093
(0.0007)

0.0017
(0.0009)

0.0001
(0.0026)

0.9916
(0.0081)

0.1781
(0.0100) 35 353.41

FR
0.0001
(0.0002)

0.2199× 10−6

(0.0002)
0.0033
(0.0001)

0.9720
(0.0161)

0.1549
(0.0188) 41 426.06

NL
0.0077
(0.0011)

0.0003
(0.0007)

0.0025
(0.0017)

0.0042
(0.0316)

0.2940
(−) 21 349.68

ES
0.0075
(0.0005)

0.1470× 10−8

(0.0005)
0.2722× 10−6

(0.0013)
0.9805
(0.0122)

0.1579
(0.0150) 40 323.14

UK
0.3060× 10−6

(0.0016)
0.2815× 10−8

(0.0004)
0.0091
(0.0004)

0.9557
(0.0172)

0.0776
(0.0261) 81 629.25

US
0.0001
(0.0029)

0.0012
(−)

0.0071
(0.0003)

0.8956
(0.0221)

0.3228
(0.0144) 19 736.16
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Table 4: Parameter estimates in the model with trend plus a stationary AR(2) cyclical component.

Cells report parameter estimates in the trend plus cycle structural time series model with the autoregressive
representation for the cycle, equations (1)-(4). The variance of the disturbance term ut in the observation equation
is fixed to 0. The first 21 observations are discarded in the computation of the likelihood. Standard errors are
reported in parentheses. The roots refer to the polynomial φ(L) = 1− φ1L− φ2L

2. Figure 3 displays the inferred
cyclical components.

Series σv σw σe φ1 φ2 Roots φ(L) Log-Lik.

FR
0.0027
(0.0004)

0.1156× 10−7

(0.0005)
0.0022
(0.0005)

1.6680
(0.0334)

−0.6955
(0.0044)

−0.4967;
2.8949 419.40

NL
0.0078
(0.0010)

0.0003
(0.0007)

0.0015
(0.0005)

−0.6564
(−)

−0.1077
(−)

1.2621;
−7.3568 350.06

UK
0.0090
(0.0011)

0.3547× 10−8

(0.0005)
0.0016
(0.0038)

−0.3226
(1.2453)

−0.0083
(0.0677)

2.8856;
−41.7531 624.65

US
0.0055
(0.0019)

0.0001
(0.0005)

0.0061
(0.0020)

1.4798
(0.1698)

−0.5474
(0.1723)

−0.5598;
3.2632 743.65

Table 5: AR model with Markov switching in mean. Parameter estimates

Cells report parameter estimates for an AR model with a two-state Markov switching mean given in equation (11).
Standard errors in parentheses. The dependent variable is 100 times the difference of the logarithms of the GDP
series, except for UK and US where a Box-Cox transformation with Box-Cox parameter 1 and 0.5, respectively for
each series is applied.

Series p11 p22 φ1 φ2 φ3 µ1 µ2 σ2 Log-Lik.

FI
0.916
(0.075)

0.991
(0.009)

0.142
(0.068)

0.053
(0.062)

0.2335
(0.059)

−0.817
(0.265)

0.900
(0.098)

0.361
(0.046)

-124.398

FR
0.633
(0.165)

0.882
(0.129)

0.115
(0.132)

0.2534
(0.121)

0.219
(0.150)

0.105
(0.176)

0.628
(0.117)

0.104
(0.031)

-53.512

NL
1.891× 10−5

(0.477)
0.952
(0.024)

0.021
(0.095)

0.172
(0.076)

- −2.124
(0.467)

0.706
(0.079)

0.456
(0.061)

-145.325

ES
0.547
(0.116)

0.897
(0.035)

0.266
(0.049)

0.304
(0.039)

0.214
(0.041)

−0.205
(0.162)

0.861
(0.137)

0.087
(0.013)

-61.559

UK
0.452
(0.133)

0.939
(0.022)

0.040
(0.062)

0.241
(0.064)

0.247
(0.058)

−0.113
(0.024)

0.105
(0.0112)

0.006
(0.001)

163.414

US
0.676
(0.156)

0.939
(0.032)

0.164
(0.096)

0.150
(0.075)

- −0.218
(0.241)

0.702
(0.082)

0.216
(0.027)

-191.803
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Table 6: Switching damping factor

Cells report parameter estimates in a model with a Markov switching variable in the trend and switching variance
in the transitory component, equations (21)-(24). Standard errors in parentheses. The damping factor ρ is taking
as a measure of persistence and is estimated in two different regimes. The transitory component is represented
in the trigonometric specification. The input series are 100 times the logarithm of the US GDP and FR GDP. A
switching damping factor appears to be not plausible in the US GDP series. In the GDP series for France, the
damping factor is substantially lower in regime 1 than in regime 2.

FR GDP US GDP

p11 0.866
(0.113)

τ1 −0.174
(−)

p11 0.993
(0.009)

τ1 −0.095
(818.643)

p22 0.952
(0.039)

τ2 0.004
(0.035)

p22 0.995
(0.005)

τ2 0.172
(0.0290)

ρ1 0.662
(0.089)

σ2
u 0.8 · 10−14

(−)
ρ1 0.910

(0.027)
σ2
u 0.8 · 10−12

(0.026)

ρ2 0.999
(0.024)

σ2
e,1 0.039

(0.014)
ρ2 0.959

(0.020)
σ2
e,1 0.191

(0.044)

λ 0.148
(0.017)

σ2
e,2 0.120

(0.020)
λ 0.131

(0.022)
σ2
e,2 1.219

(0.148)

Log-Lik. -47.143 -271.265
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Table 7: Structural Markov switching model with correlated components

Cells report parameter estimates in two models with correlation between the trend and cycle components in the
context of Markov switching models. Standard errors in parentheses. The input series is 100 times the logarithm
of the US GDP. In both models the transitory component is estimated in the trigonometric representation. In
model 1, equations (31)-(34), Markov switching variances are estimated in both components. The covariance is
regime-dependent as well. The estimated covariance in regime 1 is relatively different from zero compared to the
estimate for regime 2. In model 2, equations (35)-(38), the variances and the covariance are not regime-dependent,
a switching variable in the trend component is included instead. The estimated covariance is negative in this
model.

Parameter estimates

Model 1 Model 2

p11 0.002 p11 0.935
(0.030)

p22 0.004 p22 0.634
(0.120)

λ 0.138 λ 0.100
(0.022)

σ2
v,1 0.050 τ1 −0.232

(−)

σ2
v,1 1.076 τ2 1.789

(0.308)

σ2
e,1 0.156 σ2

v 3.25 · 10−9

(−)

σ2
e,1 0.001 σ2

e 1.454
(1.180)

σev,1 0.361 σev −0.439
(0.569)

σev,2 0.036 Log-Lik. -332.695

Log-Lik. -345.864
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Table 8: FR GDP series: Two transitory/cyclical components

Cells report parameter estimates in model (25)-(30) including a trend plus two transitory components in the
trigonometric representation. Two transitory components are estimated jointly. The corresponding parameter
estimates are labeled as (1) and (2), respectively for each transitory component. A Markov switching variable in
the trend component is considered. Standard errors in parentheses. The input series is 100 times the logarithm
of the GDP of France. Two cycles are detected. One of them is deterministic with periodicity 42 quarters. The
second cycle is stochastic with periodicity 21 quarters.

Parameter estimates

p11 0.611
(0.129)

λ(1) 0.298
(0.017)

p22 0.913
(0.042)

λ(2) 0.150
(0.003)

τ1 −0.423
(222.768)

σu 0.169
(0.022)

τ2 0.622
(0.075)

σ
(1)
e 0.110

(0.030)

Log-Lik. 45.406 σ
(2)
e 0.950× 10−6

(0.0188)
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Figure 1: Lam’s model by exact and approximate ML

Based on results in Table 1. Lam’s model, equations (13)-(15), is fitted to the US GDP series in the sample period
1952:II-1984:IV. The reference cyclical component and probabilities are computed following parameter estimates reported
in Lam (1990). The cyclical component and probabilities estimated by approximate maximum likelihood are obtained
using Kim’s algorithm.
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Figure 2: Cyclical component in trend plus cycle model with the trigonometric representation of the
cycle

Inferred cyclical component from the permanent plus transitory unobserved components model with the trigonometric
representation for the cycle, equations (1)-(2) and (5)-(6). Based on results in Table 3.
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Figure 3: Cyclical component in the model with trend plus a stationary AR(2) cyclical component

Inferred cyclical component from the permanent plus transitory unobserved components model with an AR(2) model for
the cycle, equations (1)-(4). Based on results in Table 4.
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Figure 4: MS AR model. Filtered probabilities of regime 1

Filtered probabilities of regime 1 in an AR model with a two-state Markov switching in the mean given in equation (11).
Based on results in Table 5.
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Figure 5: MS AR model. Fitted values

Based on results in Table 5. Dependent variable and fitted values in an AR model with a two-state Markov switching in
the mean, equation (11). The dependent variable is 100 times the first differences of the logarithm of the GDP series,
except for UK and US where a Box-Cox transformation with Box-Cox parameter 1 and 0.5, respectively for each series
is applied.

1975 1980 1985 1990 1995 2000 2005

−2

0

2

4

Finland
Dependent variable Fitted values Additive outlier

1980 1985 1990 1995 2000 2005

−0.5

0.0

0.5

1.0

1.5

France

1980 1985 1990 1995 2000 2005

−4

−2

0

2

4

6
Netherlands

1980 1985 1990 1995 2000 2005
−2

−1

0

1

2

3

Spain

1960 1970 1980 1990 2000 2010

−0.2

0.0

0.2

0.4

0.6
United Kingdom

1950 1960 1970 1980 1990 2000 2010

−1

0

1

2

USA

42



Figure 6: UK GDP. AR model with MS in mean and variance

Growth rates of the UK GDP series and filtered probabilities of regime 1 in an AR model for the growth rates with a
two-state Markov switching in the variance. The figure suggests a structural change in the variance of the data.
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Figure 7: Structural Markov switching model with correlated components

Based on results reported in Table 7 for model 2 (equations (35)-(38)): trend with a switching variable plus transitory
component. The input series is 100 times the logarithm of the US GDP. Official NBER trough dates are indicated with
vertical dotted lines in the top graphic. They are reasonably matched in most of the cases, except for the recession at
the beginning of 1970, where the second phase of the cycle is stretched compared to the official business cycle dates.

1950 1960 1970 1980 1990 2000

−5

0

5

Inferred cycle

1950 1960 1970 1980 1990 2000
0.0

0.2

0.4

0.6

0.8

1.0
Filtered probabilities of regime 2

43



Figure 8: FR GDP series: Two transitory/cyclical components

The model given in equations (25)-(30) including a trend plus two transitory components in the trigonometric repre-
sentation is estimated for the GDP of France. The periodogram depicts the spectral density estimate for the series
after removing a linear trend to render stationarity. The trend and cycle components and the filtered probabilities are
inferred from the estimated model reported in Table 8. Two cycles are detected. One of them is purely deterministic
with periodicity 42 quarters. The second cycle is stochastic with periodicity 21 quarters. One cycle of the component
of lower periodicity is completed within half cycle of the other component, approximately. The highest probabilities of
regime 1 appear to coincide with a trough in the cycle of higher periodicity, especially at the beginning of the sample.
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